精英家教网 > 高中数学 > 题目详情
3.若函数f(x)=$\left\{\begin{array}{l}{alnx+1-a-{b}^{2},x≥1}\\{a{x}^{2}-2x,x>1}\end{array}\right.$对任意实数b均恰好有两个零点,则实数a的取值范围是[1,2).

分析 求出f(x)=0的解,根据零点个数和定义域列不等式组得出a的范围.

解答 解:当x≥1时,令f(x)=0得x=e${\;}^{\frac{a+{b}^{2}-1}{a}}$,
当x>1时,令f(x)=0得x=0(舍)或x=$\frac{2}{a}$.
∵f(x)恰好有两个零点,∴e${\;}^{\frac{a+{b}^{2}-1}{a}}$≥1对任意实数b恒成立,且$\frac{2}{a}$>1,
∴$\left\{\begin{array}{l}{\frac{a-1}{a}≥0}\\{\frac{2}{a}>1}\end{array}\right.$,解得1≤a<2.
故答案为:[1,2).

点评 本题考查了分段函数的零点,一定要特别注意函数的定义域范围,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.某种饮料每箱装6瓶,库存23箱未开封的饮料,现欲对这种饮料进行质量检测,工作人员需从中随机取出10瓶,若采用系统抽样法,则要剔除的饮料瓶数是(  )
A.2B.8C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.等差数列{an}的前n项和为Sn,若S10=80,a4=5,则a13=(  )
A.19B.21C.23D.25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在正方体ABCD-A1B1C1D1中,O为上底面A1B1C1D1的中心,则AO与B1C所成角的余弦值为:$\frac{\sqrt{3}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知圆柱的底面直径与高都等于球的直径,若该球的表面积为48π,则圆柱的侧面积为48π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{{3}^{x}-{x}^{2},x≥0}\\{f(x+2),x<0}\end{array}\right.$,则f(-9)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx+ax2-ax,其中a∈R.
(1)当a=0时,求函数f(x)在x=1处的切线方程;
(2)若函数f(x)在定义域上有且仅有一个极值点,求实数a的取值范围;
(3)若对任意x∈[1,+∞),f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn
(1)求an及Sn
(2)求数列$\{\frac{1}{{a}_{n}{a}_{n+1}}\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xoy中,直线${C_1}:\sqrt{3}x+y-4=0$,曲线${C_2}:\left\{\begin{array}{l}x=cosφ\\ y=1+sinφ\end{array}\right.(φ$为参数),以以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系.
(I)求C1,C2的极坐标方程;
(II)若曲线C3的极坐标方程为$θ=α(ρ>0,0<α<\frac{π}{2})$,且曲线C3分别交C1,C2于点A,B两点,求$\frac{OB}{OA}$的最大值.

查看答案和解析>>

同步练习册答案