精英家教网 > 高中数学 > 题目详情
9.在平面直角坐标系中,直线l的参数方程为$\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)已知直线l与曲线C交于A,B两点,试求|AB|.

分析 (Ⅰ)直接由曲线C的极坐标方程求出曲线C的直角坐标方程即可;
(Ⅱ)把直线l的参数方程代入曲线C的方程得5t2+4t-12=0,求出t1+t2和t1t2的值,由此能求出|AB|.

解答 解:(Ⅰ)∵曲线C的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12,
∴曲线C的直角坐标方程为3x2+4y2=12,化简得$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$;
(Ⅱ)把直线l的参数方程$\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$代入曲线C的方程$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$,化简整理得5t2+4t-12=0,
∴${t}_{1}+{t}_{2}=-\frac{4}{5}$,${t}_{1}{t}_{2}=-\frac{12}{5}$,
∴|AB|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}=\sqrt{\frac{256}{25}}=\frac{16}{5}$.

点评 本题考查直线的极坐标方程、曲线的直角坐标方程的求法,考查弦长的求法,考查直角坐标方程、极坐标方程、参数方程的互化,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.定义:用{x}表示不小于x的最小整数,例如{2}=2,{1,2}=2,{-1,1}=-1,已知数列{an}满足:${a_1}=1,{a_{n+1}}={a_n}^2+{a_n}$,则{$\frac{1}{{a}_{1}+1}+\frac{1}{{a}_{2}+1}+…+\frac{1}{{a}_{2016}+1}$}=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)的图象如图所示,则f(x)的解析式可能是(  )
A.$\frac{|cos3x|}{x}$B.$\frac{1+cos2x}{2x}$
C.$\frac{(4{x}^{2}-{π}^{2})(4{x}^{2}-9{π}^{2})}{{x}^{5}}$D.$\frac{|sin2x|}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足$\left\{\begin{array}{l}{y≥0}\\{x-y≥0}\\{2x-y-2≥0}\end{array}\right.$,则ω=$\frac{y-1}{x+1}$的取值范围是(  )
A.[-1,$\frac{1}{3}$]B.[-$\frac{1}{2}$,$\frac{1}{3}$]C.[-$\frac{1}{2}$,1)D.[-$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.从4名男同学和3名女同学组成的团队中选出3人,男女都有的情况有30种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.等差数列{an}的前n项和为Sn,若S10=80,a4=5,则a13=(  )
A.19B.21C.23D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx,g(x)=ax2-bx(a,b为常数).
(1)求函数f(x)在点(1,f(1))处的切线方程;
(2)当a=$\frac{1}{2}$时,设h(x)=f(x)+g(x),若函数h(x)在定义域上存在单调减区间,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知圆柱的底面直径与高都等于球的直径,若该球的表面积为48π,则圆柱的侧面积为48π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若多项式x+x11=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10+a11(x+1)11,则a10的值为-11.

查看答案和解析>>

同步练习册答案