精英家教网 > 高中数学 > 题目详情
4.从4名男同学和3名女同学组成的团队中选出3人,男女都有的情况有30种.

分析 根据题意,分析可得:若取出的选出的3人男女都有,有2种情况,即选出的3人为2男1女或1男2女,分2种情况进行分类讨论,由加法原理计算可得答案.

解答 解:根据题意,按选出3人中女生的数目分2种情况讨论:
①、选出3人中有1名女生,即选出的3人为2男1女,有C42C31=18种选法,
②、选出3人中有2名女生,即选出的3人为1男2女,有C41C32=12种选法,
则选出的3人男女都有的情况有18+12=30种;
故答案为:30.

点评 本题考查排列、组合的应用,注意依据题意要求,进行分类讨论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.在正方体ABCD-A1B1C1D1中,异面直线B1D1与AC所成角大小是90°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=2$\sqrt{2}$cos($\frac{π}{4}$+θ).
(I)求直线l的普通方程和曲线C的直角坐标方程;
(Ⅱ)设直线l与曲线C相交于M,N两点,求|MN|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设两向量$\overrightarrow{e_1}$,$\overrightarrow{e_2}$满足$|\overrightarrow{e_1}|=2$,$|\overrightarrow{e_2}|=1$,$\overrightarrow{e_1}$,$\overrightarrow{e_2}$的夹角为60°,$\vec a=2$$\overrightarrow{e_1}$+$\overrightarrow{e_2}$$\vec b=\overrightarrow{e_1}+2\overrightarrow{e_2}$,则$\vec a$在$\vec b$上的投影为(  )
A.$\frac{{5\sqrt{3}}}{2}$B.$\frac{{5\sqrt{21}}}{7}$C.$\frac{{5\sqrt{7}}}{7}$D.$\frac{{5\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求函数$f(x)=\frac{{-2{x^2}+x-3}}{x},\;(x>0)$的最大值,以及此时x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系中,直线l的参数方程为$\left\{{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=\frac{{\sqrt{3}}}{2}t}\end{array}}\right.$(t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为3ρ2cos2θ+4ρ2sin2θ=12.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)已知直线l与曲线C交于A,B两点,试求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,角A、B、C的对边分别为a,b,c,且$\frac{c}{cosC}$=$\frac{a+b}{cosA+cosB}$.
(1)求角A的大小;
(2)若△ABC的外接圆直径为1,求a2+b2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在等差数列{an}中,a2=4,a4+a7=15. 
(1)求数列{an}的通项公式;
(2)设bn=2${\;}^{{a}_{n}-2}$+2n,求b1+b2+b3+…+b9的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}满足4an=an-1-3(n≥2且n∈N*),且a1=-$\frac{3}{4}$,设bn$+2=3lo{g}_{\frac{1}{4}}$(an+1),n∈N*,数列{cn}满足cn=(an+1)bn
(1)求证{an+1}是等比数列并求出数列{an}的通项公式;
(2)求数列{cn}的前n项和Sn
(3)对于任意n∈N*,cn≤m2-m-$\frac{1}{2}$恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案