精英家教网 > 高中数学 > 题目详情
10.如图,在底面是菱形的四棱锥P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=$\sqrt{2}a$,点E是PD中点.
(1)求证:PA⊥平面ABCD;
(2)求二面角E-AC-D的余弦值.

分析 (1)推导出AB=AD=AC=a,PA⊥AB,PA⊥AD,由此能证明PA⊥平面ABCD.
(2)作EG∥PA交AD于G,由PA⊥平面ABCD.知EG⊥平面ABCD.作GH⊥AC于H,连结EH,则EH⊥AC,从而∠EHG即为二面角E-AC-D的平面角,由此能示出二面角E-AC-D的余弦值.

解答 证明:(1)∵底面ABCD是菱形,∠ABC=60°,
∴AB=AD=AC=a,
在△PAB中,∵PA2+AB2=2a2=PB2,∴PA⊥AB.
同理,PA⊥AD,
∵AD∩AB=A,∴PA⊥平面ABCD.
解:(2)作EG∥PA交AD于G,
由PA⊥平面ABCD.知EG⊥平面ABCD.
作GH⊥AC于H,连结EH,则EH⊥AC,
∴∠EHG即为二面角E-AC-D的平面角θ.
又PE=ED,∴EG=$\frac{1}{2}a$,AG=$\frac{1}{2}a$,GH=AGsin60°=$\frac{\sqrt{3}}{4}a$,
∴$cosθ=\frac{EG}{EH}=\frac{{\sqrt{21}}}{7}$,
∴二面角E-AC-D的余弦值为$\frac{\sqrt{21}}{7}$.

点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、考查函数与方程思想、数形结合思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设(1+x+x2n=a0+a1x+a2x2+…a2nx2n
(1)求a0的值;
(2)求$\frac{a_1}{2}+\frac{a_2}{2^2}+\frac{a_3}{2^3}+…+\frac{{{a_{2n}}}}{{{2^{2n}}}}$的值;
(3)求a1+a3+…+a2n-1的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设θ为第三象限角,若tanθ=1,则sinθ+cosθ=$-\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在极坐标系中,O是极点,设点A(1,$\frac{π}{6}$),B(2,$\frac{π}{2}$),则△OAB的面积是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知空间四边形ABCD的每条边和对角线的长都等于1,点E、F分别是AB、AD的中点,则$\overrightarrow{ED}•\overrightarrow{FC}$等于(  )
A.$\frac{1}{8}$B.$-\frac{1}{8}$C.$\frac{{\sqrt{3}}}{8}$D.$-\frac{{\sqrt{3}}}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=3x的定义域为R,满足f(a+2)=18,函数g(x)=λ•3ax-4x的定义域为[0,1].
(1)求实数a的值;
(2)若函数g(x)为定义域上单调减函数,求实数λ的取值范围;
(3)λ为何值时,函数g(x)的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.四棱锥P-ABCD中,PA⊥底面ABCD,且PA=AB=AD=$\frac{1}{2}$CD,AB∥CD,∠ADC=90°.
(Ⅰ)在侧棱PC上是否存在一点Q,使BQ∥平面PAD?证明你的结论;
(Ⅱ)求平面PAD与平面PBC所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知全集U={-2,-1,0,1,2},集合M={0,1},N={0,1,2},则(∁UM)∩N=(  )
A.{0,2}B.{1,2}C.{2}D.{0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若实数x,y满足$\left\{\begin{array}{l}{x-y+1≤0}\\{x≥0}\\{y≤2}\end{array}\right.$,则$\frac{y}{x}$的最小值是2.

查看答案和解析>>

同步练习册答案