精英家教网 > 高中数学 > 题目详情
17.设f(x)=xeax,g(x)=lnx+1
(Ⅰ)a=-1,f(x)与g(x)均在x0取到最大值,求x0及k的值;
(Ⅱ)a=k=1时,求证:f(x)≥g(x)

分析 (Ⅰ)求出函数的导数,根据函数的单调性求出f(x)的最大值,求出x0的值,通过讨论k的范围,得到关于k的方程,解出即可;
(Ⅱ)设h(x)=xex-x-lnx-1,求出函数的导数,根据函数的单调性证明即可.

解答 解:(Ⅰ)a=-1 时,f′(x)=-xe-x+e-x=e-x(1-x),
f(x)在(-∞,1)递增,(1,+∞)递减,
∴f(x)max=f(1),1为f(x)最大值点,
即x0=1,g′(x)=k+$\frac{1}{x}$=$\frac{kx+1}{x}$,
k≥0时g(x) 在(0,+∞)增 f(x) 无最值,
k<0时,g(x)在(0,-$\frac{1}{k}$)递 增,在(-$\frac{1}{k}$,+∞)递减,
g(x)的最大值为g(-$\frac{1}{k}$),
∴-$\frac{1}{k}$=1,解得:k=-1,
∴k=-1,x0=1;
(Ⅱ)设h(x)=xex-x-lnx-1,
h′(x)=(x+1)ex-$\frac{x+1}{x}$=(x+1)•(ex-$\frac{1}{x}$),
设u(x)=ex-$\frac{1}{x}$,u′(x)=ex+$\frac{1}{{x}^{2}}$>0,
∴u(x)递增,u($\frac{1}{2}$)=$\sqrt{e}$-2<0,u(1)=e-1>0,
∴?x0∈($\frac{1}{2}$,1),使得u(x0)=0,
即${e}^{{x}_{0}}$-$\frac{1}{{x}_{0}}$=0,∴${e}^{{x}_{0}}$=$\frac{1}{{x}_{0}}$,且x0=-lnx,
所以h(x)在(0,x0)递减,在(x0,+∞)递增,
h(x)min=h(x0)=x0${e}^{{x}_{0}}$-x0-lnx0-1=1-x0-lnx0-1=0,
∴h(x)≥0恒成立,
∴xex≥x+lnx+1,即f(x)≥g(x).

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx+ax2-ax,其中a∈R.
(1)当a=0时,求函数f(x)在x=1处的切线方程;
(2)若函数f(x)在定义域上有且仅有一个极值点,求实数a的取值范围;
(3)若对任意x∈[1,+∞),f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,三内角A,B,C的对边分别为a,b,c,若-$\frac{1}{2}$tanA=sinBcosC+cosBsinC,且△ABC的面积为2$\sqrt{3}$.
(1)求bc的值;
(2)若b=2c,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xoy中,直线${C_1}:\sqrt{3}x+y-4=0$,曲线${C_2}:\left\{\begin{array}{l}x=cosφ\\ y=1+sinφ\end{array}\right.(φ$为参数),以以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系.
(I)求C1,C2的极坐标方程;
(II)若曲线C3的极坐标方程为$θ=α(ρ>0,0<α<\frac{π}{2})$,且曲线C3分别交C1,C2于点A,B两点,求$\frac{OB}{OA}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设数列{an}的前n项和为Sn.若Sn=2an-n,则$\frac{2}{{a}_{1}{a}_{2}}$+$\frac{4}{a{{\;}_{2}a}_{3}}$+$\frac{8}{{a}_{3}{a}_{4}}$+$\frac{16}{{a}_{4}{a}_{5}}$=$\frac{30}{31}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知椭圆的中心在原点,焦点在x轴上,离心率为$\frac{{\sqrt{3}}}{2}$,且经过点M(2,1).平行于OM的直线l在y轴上的截距为m(m≠0),l交椭圆于A,B两个不同点
(1)求椭圆的方程;
(2)求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,直三棱柱ABC-A1B1C1的体积为V,点P、Q分别在侧棱A A1和C C1上,AP=C1Q,则多面体A1B1C1-PBQ的体积为(  )
A.$\frac{3V}{4}$B.$\frac{2V}{3}$C.$\frac{V}{2}$D.$\frac{V}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,满足2an+1+Sn-2=0.
(1)求数列{an}的通项公式;
(2)设bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}的前n项和为Sn,且Sn=2an-2(n∈N+),若数列{bn}满足${b_1}=1,{b_n}+{b_{n+1}}=\frac{1}{a_n}(n∈{N_+})$,则数列{bn}的前2n+3项和T2n+3=$\frac{{{4^{n+2}}-1}}{{3×{4^{n+1}}}}$.

查看答案和解析>>

同步练习册答案