精英家教网 > 高中数学 > 题目详情
6.设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,满足2an+1+Sn-2=0.
(1)求数列{an}的通项公式;
(2)设bn=nan,求数列{bn}的前n项和Tn

分析 (1)由n≥2时,an=Sn-Sn-1,将n换为n-1相减,结合等比数列的定义和通项公式,即可得到所求;
(2)求得${b_n}=n{a_n}=\frac{n}{{{2^{n-1}}}}$,运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理,即可得到所求和.

解答 解:(1)∵2an+1+Sn-2=0,
∴当n≥2时,2an+Sn-1-2=0,
两式相减得2an+1-2an+Sn-Sn-1=0,2an+1-2an+an=0,∴${a_{n+1}}=\frac{1}{2}{a_n}$;
又当n=1时,$2{a_2}+{S_1}-2=0⇒{a_2}=\frac{1}{2}{a_1}$,即${a_{n+1}}=\frac{1}{2}{a_n}(n∈N+)$,
∴{an}是以首项a1=1,公比$q=\frac{1}{2}$的等比数列,
∴数列{an}的通项公式为${a_n}={({\frac{1}{2}})^{n-1}}$;
(2)由(1)知,${b_n}=n{a_n}=\frac{n}{{{2^{n-1}}}}$,
则${T_n}=1+\frac{2}{2}+\frac{3}{2^2}+…+\frac{n-1}{{{2^{n-2}}}}+\frac{n}{{{2^{n-1}}}}$,①
$\frac{1}{2}$Tn=$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n-1}{{2}^{n-1}}$+$\frac{n}{{2}^{n}}$,②
①-②得$\frac{1}{2}{T_n}=1+\frac{1}{2}+\frac{1}{2^2}+…+\frac{1}{{{2^{n-1}}}}-\frac{n}{2^n}$
=$\frac{{(1-\frac{1}{2^n})}}{{1-\frac{1}{2}}}-\frac{n}{2^n}=2(1-\frac{1}{2^n})-\frac{n}{2^n}=2-(n+2)\frac{1}{2^n}$,
所以,数列{bn}的前n项和为${T_n}=4-(n+2)\frac{1}{{{2^{n-1}}}}$.

点评 本题考查数列通项的求法,注意运用数列递推式,考查等比数列的通项公式和求和公式的运用,考查数列的求和方法:错位相减法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知复数z满足zi5=1+2i,则$\overline{z}$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(x)=xeax,g(x)=lnx+1
(Ⅰ)a=-1,f(x)与g(x)均在x0取到最大值,求x0及k的值;
(Ⅱ)a=k=1时,求证:f(x)≥g(x)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.成都西博会期间,某高校有12名志愿者参加服务工作.若每天排早、中、晚三班,每班4人,每人每天最多值一班,则开幕式当天不同的排班种数为(  )
A.$C_{12}^4C_8^4C_4^4$B.$A_{12}^4A_8^4A_4^4$
C.$\frac{{C_{12}^4C_8^4C_4^4}}{A_3^3}$D.$C_{12}^4C_8^4C_4^4A_3^3$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设θ为第三象限角,若tanθ=1,则sinθ+cosθ=$-\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠DAB=$\frac{π}{3}$,PD⊥平面ABCD,PD=AD=3,PM=2MD,AN=2NB,E是AB中点.
(1)求证:直线AM∥平面PNC;
(2)求证:直线CD⊥平面PDE;
(3)求三棱锥C-PDA体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在极坐标系中,O是极点,设点A(1,$\frac{π}{6}$),B(2,$\frac{π}{2}$),则△OAB的面积是$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=3x的定义域为R,满足f(a+2)=18,函数g(x)=λ•3ax-4x的定义域为[0,1].
(1)求实数a的值;
(2)若函数g(x)为定义域上单调减函数,求实数λ的取值范围;
(3)λ为何值时,函数g(x)的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的两个焦点分别为F1,F2,若椭圆上不存在点P,使得∠F1PF2是钝角,则椭圆离心率的取值范围是(  )
A.$(0,\frac{{\sqrt{2}}}{2}]$B.$[\frac{{\sqrt{2}}}{2},1)$C.$(0,\frac{1}{2})$D.$[\frac{1}{2},1)$

查看答案和解析>>

同步练习册答案