精英家教网 > 高中数学 > 题目详情
4.已知复数z满足zi5=1+2i,则$\overline{z}$在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用复数的运算法则、几何意义即可得出.

解答 解:∵zi5=1+2i,∴zi=1+2i,∴-i•zi=-i(1+2i),化为:z=2-i.
则$\overline{z}$=2+i在复平面内对应的点(2,1)位于第一象限.
故选:A.

点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.等差数列{an}的前n项和为Sn,若S10=80,a4=5,则a13=(  )
A.19B.21C.23D.25

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx+ax2-ax,其中a∈R.
(1)当a=0时,求函数f(x)在x=1处的切线方程;
(2)若函数f(x)在定义域上有且仅有一个极值点,求实数a的取值范围;
(3)若对任意x∈[1,+∞),f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n项和为Sn
(1)求an及Sn
(2)求数列$\{\frac{1}{{a}_{n}{a}_{n+1}}\}$的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若多项式x+x11=a0+a1(x+1)+a2(x+1)2+…+a10(x+1)10+a11(x+1)11,则a10的值为-11.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.数列1$\frac{1}{2}$,3$\frac{1}{4}$,5$\frac{1}{8}$,7$\frac{1}{16}$,…,(2n-1)+$\frac{1}{{2}^{n}}$,…的前n项和Sn的值等于n2+1-$\frac{1}{{2}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,三内角A,B,C的对边分别为a,b,c,若-$\frac{1}{2}$tanA=sinBcosC+cosBsinC,且△ABC的面积为2$\sqrt{3}$.
(1)求bc的值;
(2)若b=2c,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xoy中,直线${C_1}:\sqrt{3}x+y-4=0$,曲线${C_2}:\left\{\begin{array}{l}x=cosφ\\ y=1+sinφ\end{array}\right.(φ$为参数),以以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系.
(I)求C1,C2的极坐标方程;
(II)若曲线C3的极坐标方程为$θ=α(ρ>0,0<α<\frac{π}{2})$,且曲线C3分别交C1,C2于点A,B两点,求$\frac{OB}{OA}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,满足2an+1+Sn-2=0.
(1)求数列{an}的通项公式;
(2)设bn=nan,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案