精英家教网 > 高中数学 > 题目详情
4.集合A={x∈N|x2-4x-5<0},B={x|log2(x-2)≤1},则A∩B=(  )
A.(-1,4]B.(2,4]C.(3,4)D.{3,4}

分析 解不等式得集合A、B,根据交集的定义写出A∩B.

解答 解:集合A={x∈N|x2-4x-5<0}={x∈N|-1<x<5}={0,1,2,3,4},
B={x|log2(x-2)≤1}={x|0<x-2≤2}={x|2<x≤4},
∴A∩B={3,4}.
故选:D.

点评 本题考查了解不等式与交集的运算问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.将原油精炼为汽油、柴油、塑胶等各种不同的产品,需要对原油进行冷却和加热,若在第xh时,原油的温度(单位:℃)为f(x)=x2-7x+15(0≤x≤8),则在第1h时,原油温度的瞬时变化率为-5℃/h.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题$p:?x>e,{({\frac{1}{2}})^x}$>lnx;命题q:?a>1,b>1,logab+2logba≥2$\sqrt{2}$,则下列命题中为真命题的是(  )
A.(?p)∧qB.p∧qC.p∧(?q)D.p∨(?q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x-2|+|x+4|,g(x)=x2+4x+3.
(1)求不等式f(x)≥g(x)的解集;
(2)若f(x)≥|1-5a|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数$f(x)={e^x}-ax-1-\frac{x^2}{2},x∈R$.
(1)若a=1,求函数f(x)的单调区间;
(2)若对任意x≥0都有f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=x2+bx过(1,3)点,若数列{$\frac{1}{f(n)}$}的前n项和为Sn,则Sn的值为(  )
A.$\frac{n+1}{n+2}$B.$\frac{n+1}{2n+4}$C.$\frac{3}{2}$-$\frac{2n+3}{(n+1)(n+2)}$D.$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四边形ABCD是正方形,四边形ABEG是平行四边形,且平面ABCD⊥平面ABEG,AE⊥AB,EF⊥AG于F,设线段CD、AE的中点分别为P、M.
(Ⅰ)求证:EF⊥平面BCE;
(Ⅱ)求证:MP∥平面BCE;
(Ⅲ)若∠EAF=30°,求三棱锥M-BDP和三棱锥F-BCE的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
年龄[15,25)[25,35)[35,45)[45,55)[55,65]
支持“延迟退休”的人数155152817
(1)由以上统计数据填2×2列联表,并判断是否95%的把握认为以45岁为界点的不同人群对“延迟退休年龄政策”的支持有差异;
45岁以下45岁以上总计
支持
不支持
总计
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动,现从这8人中随机抽2人.
①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率;
②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.口袋中有形状大小都相同的2只白球和1只黑球.先从口袋中摸出1只球,记下颜色后放回口袋,然后再摸出1只球,则出现“1只白球,1只黑球”的概率为$\frac{4}{9}$.

查看答案和解析>>

同步练习册答案