精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=|x-2|+|x+4|,g(x)=x2+4x+3.
(1)求不等式f(x)≥g(x)的解集;
(2)若f(x)≥|1-5a|恒成立,求实数a的取值范围.

分析 (1)通过x与-4以及2的大小比较,去掉绝对值符号,化简不等式,然后求解即可.
(2)利用绝对值的几何意义,求出函数的最小值,然后化简不等式求解a的范围即可.

解答 解:(1)函数f(x)=|x-2|+|x+4|,g(x)=x2+4x+3,
不等式f(x)≥g(x)即:|x-2|+|x+4|≥x2+4x+3,
①当x<-4时,不等式化为:-(x-2)-(x+4)≥x2+4x+3,
解得:-5≤x≤-1,∴-5≤x<-4;
②当-4≤x≤2时,不等式化为:-(x-2)+(x+4)≥x2+4x+3,
解得:-2-$\sqrt{7}$≤x≤-2+$\sqrt{7}$,
∴-4≤x$≤-2+\sqrt{7}$;
③当x>2时,不等式化为:(x-2)+(x+4)≥x2+4x+3,
解得:x∈∅,
综上:不等式的解集为:{x|-5≤x$≤-2+\sqrt{7}$};
(2)因为|x-2|+|x+4|≥|x-2-x-4|=6,
f(x)≥|1-5a|恒成立,
所以6≥|1-5a|,即-6≤1-5a≤6,解得-1$≤a≤\frac{7}{5}$,
所以实数a的取值范围[-1,$\frac{7}{5}$].

点评 本题考查函数恒成立,不等式的解法,考查化简以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.在极坐标系中,圆ρ=-2cosθ的圆心C到直线2ρcosθ+ρsinθ-2=0的距离等于$\frac{4\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,辑录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是(  )
A.2017×22016B.2018×22015C.2017×22015D.2018×22016

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a、b∈{2,3,4,5,6,7,8,9},则logab的不同取值个数为(  )
A.53B.56C.55D.57

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f(x)是定义在R上的函数,且满足:①f(x)是偶函数;②f(x+2)是偶函数;③当0<x≤2时,f(x)=log2017x,当x=0时,f(0)=0,则方程f(x)=-2017在区间(1,10)内的多有实数根之和为(  )
A.0B.10C.12D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在方程|x|+|y|=1表示的曲线所围成的区域内(包含边界)任取一点P(x,y),则z=xy的最大值为(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.集合A={x∈N|x2-4x-5<0},B={x|log2(x-2)≤1},则A∩B=(  )
A.(-1,4]B.(2,4]C.(3,4)D.{3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=|ln||x-1||,f(x)-m的四个零点x1,x2,x3,x4,且k=$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$+$\frac{1}{{x}_{3}}$+$\frac{1}{{x}_{4}}$,则f(k)-ek的值是-e2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=3sin(2x+π)是(  )
A.周期为2π的奇函数B.周期为2π的偶函数
C.周期为π的奇函数D.周期为π的偶函数

查看答案和解析>>

同步练习册答案