精英家教网 > 高中数学 > 题目详情
3.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,辑录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是(  )
A.2017×22016B.2018×22015C.2017×22015D.2018×22016

分析 数表的每一行都是等差数列,从右到左,第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M,由此可得结论.

解答 解:由题意,数表的每一行都是等差数列,从右到左,
且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014
故第1行的第一个数为:2×2-1
第2行的第一个数为:3×20
第3行的第一个数为:4×21

第n行的第一个数为:(n+1)×2n-2
第2017行只有M,
则M=(1+2017)•22015=2018×22015
故选:B.

点评 本题考查了由数表探究数列规律的问题,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知某条曲线的参数方程是$\left\{\begin{array}{l}x=2(t+\frac{1}{t})\\ y=2(t-\frac{1}{t})\end{array}$(t是参数),则该曲线是(  )
A.直线B.C.椭圆D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将原油精炼为汽油、柴油、塑胶等各种不同的产品,需要对原油进行冷却和加热,若在第xh时,原油的温度(单位:℃)为f(x)=x2-7x+15(0≤x≤8),则在第1h时,原油温度的瞬时变化率为-5℃/h.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.把函数f(x)=cos2($\frac{π}{2}$x-$\frac{π}{6}$)的图象向左平移$\frac{1}{3}$个单位后得到的函数为g(x),则以下结论中正确的是(  )
A.g($\frac{1}{5}$)>g($\frac{8}{5}$)>0B.g($\frac{1}{5}$)$>0>g(\frac{8}{5})$C.g($\frac{8}{5}$)>g($\frac{1}{5}$)>0D.g($\frac{1}{5}$)=g($\frac{8}{5}$)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知边长为2的菱形ABCD中,∠BCD=60°,E为DC的中点,如图1所示,将△BCE沿BE折起到△BPE的位置,且平面BPE⊥平面ABED,如图2所示.
(Ⅰ)求证:△PAB为直角三角形;
(Ⅱ)求二面角A-PD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=|x-1|+|x-a|
(1)若函数f(x)的值域为[2,+∞),求实数a的值
(2)若f(2-a)≥f(2),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题$p:?x>e,{({\frac{1}{2}})^x}$>lnx;命题q:?a>1,b>1,logab+2logba≥2$\sqrt{2}$,则下列命题中为真命题的是(  )
A.(?p)∧qB.p∧qC.p∧(?q)D.p∨(?q)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=|x-2|+|x+4|,g(x)=x2+4x+3.
(1)求不等式f(x)≥g(x)的解集;
(2)若f(x)≥|1-5a|恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65岁的人群中随机调查100人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:
年龄[15,25)[25,35)[35,45)[45,55)[55,65]
支持“延迟退休”的人数155152817
(1)由以上统计数据填2×2列联表,并判断是否95%的把握认为以45岁为界点的不同人群对“延迟退休年龄政策”的支持有差异;
45岁以下45岁以上总计
支持
不支持
总计
(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动,现从这8人中随机抽2人.
①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率;
②记抽到45岁以上的人数为X,求随机变量X的分布列及数学期望.
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案