精英家教网 > 高中数学 > 题目详情
14.口袋中有形状大小都相同的2只白球和1只黑球.先从口袋中摸出1只球,记下颜色后放回口袋,然后再摸出1只球,则出现“1只白球,1只黑球”的概率为$\frac{4}{9}$.

分析 先求出基本事件总数和出现“1只白球,1只黑球”包含的基本事件个数,由此能求出出现“1只白球,1只黑球”的概率.

解答 解:口袋中有形状大小都相同的2只白球和1只黑球.先从口袋中摸出1只球,记下颜色后放回口袋,然后再摸出1只球,
基本事件总数n=3×3=9,
出现“1只白球,1只黑球”包含的基本事件个数m=2×1+1×2=4,
∴出现“1只白球,1只黑球”的概率为p=$\frac{4}{9}$.
故答案为:$\frac{4}{9}$.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.集合A={x∈N|x2-4x-5<0},B={x|log2(x-2)≤1},则A∩B=(  )
A.(-1,4]B.(2,4]C.(3,4)D.{3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,$\overrightarrow{a}$-$\overrightarrow{b}$=($\sqrt{3}$,$\sqrt{2}$),则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.2$\sqrt{2}$B.$\sqrt{17}$C.$\sqrt{15}$D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=3sin(2x+π)是(  )
A.周期为2π的奇函数B.周期为2π的偶函数
C.周期为π的奇函数D.周期为π的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.下列说法正确的是②.(填上所有正确命题的序号)
①空间三点确定一个平面
②两条相交直线确定一个平面
③一点和一条直线确定一个平面
④一条直线与两条平行线中的一条相交,则必与另一条相交.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知向量m$\overrightarrow{m}$(sin$\frac{x}{2}$,1),$\overrightarrow{n}$=(1,$\sqrt{3}$cos$\frac{x}{2}$),函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$???
(1)求函数f(x)的最小正周期;
(2)若f(α-$\frac{2π}{3}$)=$\frac{2}{3}$,求f(2α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知sin($\frac{3π}{2}$-θ)+3cos(π-θ)=sin(-θ),则sinθcosθ+cos2θ=(  )
A.-$\frac{1}{5}$B.$\frac{1}{5}$C.$\frac{3}{5}$D.$\frac{5}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知甲,乙两辆车去同一货场装货物,货场每次只能给一辆车装货物,所以若两辆车同时到达,则需要有一车等待.已知甲、乙两车装货物需要的时间都为30分钟,倘若甲、乙两车都在某1小时内到达该货场,则至少有一辆车需要等待装货物的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足:a1=1,an=$\left\{\begin{array}{l}{2{a}_{\frac{n}{2}}+1,n为偶数}\\{\frac{1}{2}+2{a}_{\frac{n-1}{2}},n为奇数}\end{array}\right.$,n=2,3,4,….
(1)求a2,a3,a4,a5的值;
(2)设bn=${a}_{{2}^{n-1}}$+1,n∈N*,求证:数列{bn}是等比数列,并求出其通项公式;
(3)对任意的m≥2,m∈N*,在数列{an}中是否存在连续的2m项构成等差数列?若存在,写出这2m项,并证明这2m项构成等差数列;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案