精英家教网 > 高中数学 > 题目详情
19.已知向量m$\overrightarrow{m}$(sin$\frac{x}{2}$,1),$\overrightarrow{n}$=(1,$\sqrt{3}$cos$\frac{x}{2}$),函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$???
(1)求函数f(x)的最小正周期;
(2)若f(α-$\frac{2π}{3}$)=$\frac{2}{3}$,求f(2α+$\frac{π}{3}$)的值.

分析 (1)根据平面向量的数量积公式得出f(x)的解析式并化简,利用三角函数的周期公式得出;
(2)由条件可得sin$\frac{α}{2}$=$\frac{1}{3}$,利用二倍角公式得出cosα,根据诱导公式化简f(2α+$\frac{π}{3}$)即可得出.

解答 解:(1)f(x)=sin$\frac{x}{2}$+$\sqrt{3}$cos$\frac{x}{2}$=2sin($\frac{x}{2}$+$\frac{π}{3}$),
∴f(x)的最小正周期T=$\frac{2π}{\frac{1}{2}}$=4π.
(2)∵f(α-$\frac{2π}{3}$)=2sin($\frac{α}{2}$)=$\frac{2}{3}$,∴sin$\frac{α}{2}$=$\frac{1}{3}$,
∴cosα=1-2sin2$\frac{α}{2}$=$\frac{7}{9}$,
∴f(2α$+\frac{π}{3}$)=2sin(α+$\frac{π}{2}$)=2cosα=$\frac{14}{9}$.

点评 本题考查了三角函数性质,三角恒等变换,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=x2+bx过(1,3)点,若数列{$\frac{1}{f(n)}$}的前n项和为Sn,则Sn的值为(  )
A.$\frac{n+1}{n+2}$B.$\frac{n+1}{2n+4}$C.$\frac{3}{2}$-$\frac{2n+3}{(n+1)(n+2)}$D.$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在四棱锥P-ABCD中,AB⊥平面BCP,CD∥平面ABP,AB=BC=CP=BP=2CD=2
(1)证明:平面ABP⊥平面ADP;
(2)若直线PA与平面PCD所成角为α,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在锐角△ABC中,$B>\frac{π}{6}$,$sin({A+\frac{π}{6}})=\frac{3}{5}$,$cos({B-\frac{π}{6}})=\frac{4}{5}$,则sin(A+B)=$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.口袋中有形状大小都相同的2只白球和1只黑球.先从口袋中摸出1只球,记下颜色后放回口袋,然后再摸出1只球,则出现“1只白球,1只黑球”的概率为$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若复数z的共轭复数是$\overline{z}$,且满足$\frac{\overline{z}}{1+i}$=i(其中i为虚数单位),则z=(  )
A.1-iB.1+iC.-1-iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.实数x,y满足不等式组:$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$,若z=x2+y2,则z的取值范围是[0,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$f(x)=\frac{e^x}{{{x^2}+a}}({a>0})$的两个极值点分别为x1,x2(x1<x2),则ax2取值范围是(  )
A.(0,1)B.(0,2)C.$({1,\frac{32}{27}}]$D.$({0,\frac{32}{27}}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.有6个人排成一排照相,要求甲、乙、丙三人站在一起,则不同的排法种数为(  )
A.24B.72C.144D.288

查看答案和解析>>

同步练习册答案