精英家教网 > 高中数学 > 题目详情
9.有6个人排成一排照相,要求甲、乙、丙三人站在一起,则不同的排法种数为(  )
A.24B.72C.144D.288

分析 根据题意,分2步进行分析:①、用捆绑法将甲、乙、丙三人看成一个整体,并考虑三人之间的顺序,②、将这个整体与其他三人全排列,求出每一步的情况数目,由分步计数原理计算可得答案.

解答 解:根据题意,分2步进行分析:
①、要求甲、乙、丙三人站在一起,将3人看成一个整体,考虑三人之间的顺序,有A33=6种情况,
②、将这个整体与其他三人全排列,有A44=24种不同顺序,
则不同的排法种数为6×24=144种;
故选:C.

点评 本题考查排列、组合的应用,对于相邻问题需要用捆绑法分析.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知向量m$\overrightarrow{m}$(sin$\frac{x}{2}$,1),$\overrightarrow{n}$=(1,$\sqrt{3}$cos$\frac{x}{2}$),函数f(x)=$\overrightarrow{m}•\overrightarrow{n}$???
(1)求函数f(x)的最小正周期;
(2)若f(α-$\frac{2π}{3}$)=$\frac{2}{3}$,求f(2α+$\frac{π}{3}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知圆x2+y2-4x-6y+9=0与直线y=kx+3相交于A,B两点,若$|{AB}|≥2\sqrt{3}$,则k的取值范围是(  )
A.[-$\frac{3}{4}$,0]B.[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$]C.[-$\sqrt{3}$,$\sqrt{3}$]D.[-$\frac{2}{3}$,0]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知数列{an}的前n项和${S_n}={(-1)^{n+1}}\frac{1}{2^n}$,如果存在正整数n,使得(p-an)(p-an+1)<0成立,则实数p的取值范围是(-$\frac{3}{4}$,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足:a1=1,an=$\left\{\begin{array}{l}{2{a}_{\frac{n}{2}}+1,n为偶数}\\{\frac{1}{2}+2{a}_{\frac{n-1}{2}},n为奇数}\end{array}\right.$,n=2,3,4,….
(1)求a2,a3,a4,a5的值;
(2)设bn=${a}_{{2}^{n-1}}$+1,n∈N*,求证:数列{bn}是等比数列,并求出其通项公式;
(3)对任意的m≥2,m∈N*,在数列{an}中是否存在连续的2m项构成等差数列?若存在,写出这2m项,并证明这2m项构成等差数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点P(2,1)是抛物线上x2=4y上的一点,点M,N是抛物线上的动点(M,N,P三点不共线),直线PM,PN分别交y轴于A,B两点,且|PA|=|PB|,则直线MN的斜率为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知数列{an}满足a2=2,2an+1=an,则数列{an}的前6项和S6等于(  )
A.$\frac{63}{16}$B.$\frac{63}{12}$C.$\frac{63}{8}$D.$\frac{63}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出下列命题:
①命题“若b2-4ac<0,则方程ax2+bx+c=0(a≠0)无实根”的否命题;
②命题“在△ABC中,AB=BC=CA,那么△ABC为等边三角形”的逆命题;
③命题“若a>b>0,则$\root{3}{a}>\root{3}{b}>0$”的逆否命题;
④“若m≥1,则mx2-2(m+1)x+(m+3)>0的解集为R”的逆命题.
其中真命题的序号为(  )
A.①②③B.①②④C.②④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}为等比数列,其前n项和为Sn,则下列结论正确的是(  )
A.若a1+a2>0,则a1+a3>0B.若a1+a3>0,则a1+a2>0
C.若a1>0,则S2017>0D.若a1>0,则S2016>0

查看答案和解析>>

同步练习册答案