精英家教网 > 高中数学 > 题目详情
18.已知向量$\overrightarrow{a}$=(2,tanθ),$\overrightarrow{b}$=(1,-2),则$\overrightarrow{a}$∥$\overrightarrow{b}$,则tan($\frac{π}{4}$+θ)等于(  )
A.0B.-$\frac{3}{5}$C.-1D.-$\frac{5}{3}$

分析 利用向量共线,求出正切函数值,然后利用两角和的正切函数求解即可.

解答 解:向量$\overrightarrow{a}$=(2,tanθ),$\overrightarrow{b}$=(1,-2),则$\overrightarrow{a}$∥$\overrightarrow{b}$,
可得:tanθ=-4.
tan($\frac{π}{4}$+θ)=$\frac{1+tanθ}{1-tanθ}$=$\frac{1-4}{1+4}$=-$\frac{3}{5}$.
故选:B.

点评 本题考查向量的共线,两角和与差的三角函数,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.将5名大学生分配到A,B,C 3个乡镇去任职,每个乡镇至少一名,那么A镇分得两位大学生的概率为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.四名同学根据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程和相关系数r,分别得到以下四个结论:
①y=2.35x-6.42,r=-0.93            ②y=-3.47x+5.65,r=-0.95
③y=5.43x+8.49,r=0.98            ④y=-4.32x-4.58,r=0.89
其中,一定不正确的结论序号是(  )
A.②③B.①④C.①②③D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,角A,B,C所对的边分别为a,b,c,且$\frac{a}{cosA}=\frac{\sqrt{3}b}{sinB}$.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2$\sqrt{3}$,B=$\frac{π}{4}$,求b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某高校为调查1000名学生每周的自习时间(单位:小时),从中随机抽查了100名学生每周的自习时间,制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,估计这1000名学生中每周的自习时间不少于22.5小时的人数是700.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.不等式x2-1>0的解集为(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某单位在岗职工共有624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设loga$\frac{2}{3}$>1,则实数a的取值范围是(  )
A.0<a<$\frac{2}{3}$B.$\frac{2}{3}$<a<1C.0<a<$\frac{2}{3}$或a>1D.a>$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.椭圆b2x2+a2y2=1(a>b>0)的左焦点为F,右顶点为A,上顶点为B,若∠ABF=90°,则椭圆的离心率为(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{5}-1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

同步练习册答案