精英家教网 > 高中数学 > 题目详情
9.底面为菱形的直棱柱ABCD-A1B1C1D1中,E、F分别为棱A1B1、A1D1的中点.
(Ⅰ)在图中作一个平面α,使得BD?α,且平面AEF∥α,(不必给出证明过程,只要求作出α与直棱柱ABCD-A1B1C1D1的截面.)
(II)若AB=AA1=2,∠BAD=60°,求平面AEF与平面α的距离d.

分析 (Ⅰ)取B1C1的中点H,C1D1的中点G,平面BHGD就是所求平面α.
(Ⅱ)取BC中点M,以D为原点,DA为x轴,DM为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出平面AEF与平面α的距离.

解答 解:(Ⅰ)取B1C1的中点H,C1D1的中点G,连结BH、GH、DH,
则平面BHGD就是所求平面α,
α与直棱柱ABCD-A1B1C1D1的截面为平面BHGD.
(Ⅱ)∵菱形的直棱柱ABCD-A1B1C1D1中,AB=AA1=2,∠BAD=60°,
∴取BC中点M,以D为原点,DA为x轴,DM为y轴,DD1为z轴,建立空间直角坐标系,
A(2,0,0),D(0,0,0),B(1,$\sqrt{3}$,0),H(0,$\sqrt{3}$,2),
$\overrightarrow{DA}$=(2,0,0),$\overrightarrow{DB}$=(1,$\sqrt{3}$,0),$\overrightarrow{DH}$=(0,$\sqrt{3}$,2),
设平面α(即平面BHGD)的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DB}=x+\sqrt{3}y=0}\\{\overrightarrow{n}•\overrightarrow{DH}=\sqrt{3}y+2z=0}\end{array}\right.$,取y=2,得$\overrightarrow{n}$=(-2$\sqrt{3}$,2,-$\sqrt{3}$),
∴平面AEF与平面α的距离d=$\frac{|\overrightarrow{DA}•\overrightarrow{n}|}{|\overrightarrow{n}|}$=$\frac{4\sqrt{3}}{\sqrt{12+4+3}}$=$\frac{4\sqrt{57}}{19}$.

点评 本题考查满足面面平行的平面的作法,考查两平面间的距离的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.在等比数列{an}中,${a_3}=\frac{3}{2},{S_3}=\frac{9}{2}$.
(1)求数列{an}的通项公式;
(2)设${b_n}={log_2}\frac{6}{{{a_{2n+1}}}}$,且{bn}为递增数列,若${c_n}=\frac{1}{{{b_n}^2}}$,求证:${c_1}+{c_2}+{c_3}+…+{c_n}<\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列函数的导数:
(1)y=x3-cosx;
(2)y=(3x2+2)(x-5)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.△ABC中,BC=7,AB=3,且$\frac{sinC}{sinB}$=$\frac{3}{5}$.
(1)求AC的长;
(2)求∠A的大小;
(3)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设向量$\overrightarrow{a}$=(2,0),$\overrightarrow{b}$=(1,1),则下列结论中正确的是(  )
A.|$\overrightarrow{a}$|=|$\overrightarrow{b}$|B.$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$C.$\overrightarrow{a}$⊥$\overrightarrow{b}$D.($\overrightarrow{a}$-$\overrightarrow{b}$)⊥$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,A=60°,B=45°,$b=\sqrt{6}$,则a=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$2\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a=log25,b=log26,$c={9^{\frac{1}{2}}}$,则(  )
A.c>b>aB.b>a>cC.c>a>bD.a>b>c

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.写出数列$-\frac{1}{2}$,$\frac{4}{3}$,$-\frac{9}{4}$,$\frac{16}{5}$,…的一个通项公式an=$(-1)^{n}•\frac{{n}^{2}}{n+1}$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,已知四边形ABCD和BCGE均为直角梯形,AD∥BC,CE∥BG且∠BCD=∠BCE=$\frac{π}{2}$,平面ABCD⊥平面BCGE,BC=CD=CE=2AD=2BG=2.
(1)求证:AG∥平面BDE;
(2)求三棱锥G-BDE的体积.

查看答案和解析>>

同步练习册答案