精英家教网 > 高中数学 > 题目详情
18.某校为提高学生身体素质,决定对毕业班的学生进行身体素质测试,每个同学共有4次测试机会,若某次测试合格就不用进行后面的测试,已知某同学每次参加测试合格的概率组成一个以$\frac{1}{8}$为公差的等差数列,若他参加第一次测试就通过的概率不足$\frac{1}{2}$,恰好参加两次测试通过的概率为$\frac{9}{32}$.
(Ⅰ)求该同学第一次参加测试就能通过的概率;
(Ⅱ)求该同学参加测试的次数的分布列和期望.

分析 (Ⅰ)设出该同学第一次测试合格的概率为a,根据题意列方程求出a的值;
(Ⅱ)该同学参加测试的次数ξ的可能取值是1、2、3、4,计算对应的概率值,写出分布列,计算数学期望即可.

解答 解:(Ⅰ)设该同学四次测试合格的概率依次为:
a,a+$\frac{1}{8}$,a+$\frac{1}{4}$,a+$\frac{3}{8}$(a≤$\frac{1}{2}$),
则(1-a)(a+$\frac{1}{8}$)=$\frac{9}{32}$,即a2-$\frac{7}{8}$a+$\frac{5}{32}$=0,
解得a=$\frac{1}{4}$或a=$\frac{5}{8}$($\frac{5}{8}$>$\frac{1}{2}$舍去),
所以小李第一次参加测试就合格的概率为$\frac{1}{4}$;
(Ⅱ)因为P(ξ=1)=$\frac{1}{4}$,P(ξ=2)=$\frac{3}{4}$×$\frac{3}{8}$=$\frac{9}{32}$,
P(ξ=3)=$\frac{3}{4}$×$\frac{5}{8}$×$\frac{4}{8}$=$\frac{15}{64}$,
P(ξ=4)=1-P(ξ=1)-P(ξ=2)-P(ξ=3)=$\frac{15}{64}$,
所以ξ的分布列为:

ξ1234
P$\frac{1}{4}$$\frac{9}{32}$$\frac{15}{64}$$\frac{15}{64}$
所以ξ的数学期望为Eξ=1×$\frac{1}{4}$+2×$\frac{9}{32}$+3×$\frac{15}{64}$+4×$\frac{15}{64}$=$\frac{157}{64}$.

点评 本题考查了离散型随机变量的分布列和期望以及相互独立事件同时发生的概率计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=2sin(ωx+φ)-1(ω>0,|φ|<π)的一个零点是$x=\frac{π}{3}$,$x=-\frac{π}{6}$是y=f(x)的图象的一条对称轴,则ω取最小值时,f(x)的单调增区间是(  )
A.$[{-\frac{7}{3}π+3kπ,-\frac{1}{6}π+3kπ}],k∈Z$B.$[{-\frac{5}{3}π+3kπ,-\frac{1}{6}π+3kπ}],k∈Z$
C.$[{-\frac{2}{3}π+2kπ,-\frac{1}{6}π+2kπ}],k∈Z$D.$[{-\frac{1}{3}π+2kπ,-\frac{1}{6}π+2kπ}],k∈Z$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若F1、F2是双曲线$\frac{{x}^{2}}{4}$-y2=1的两个焦点,点P(8,y0)在双曲线上,则△F1PF2的面积为5$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆M:x2+y2+2y-7=0和点N(0,1),动圆P经过点N且与圆M相切,圆心P的轨迹为曲线E.
(1)求曲线E的方程;
(2)点A是曲线E与x轴正半轴的交点,点B、C在曲线E上,若直线AB、AC的斜率k1,k2,满足k1k2=4,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.我国古代数学家刘徽是公元三世纪世界上最杰出的数学家,他在《九章算术圆田术》注重,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法,所谓“割圆术”,即通过圆内接正多边形细割圆,并使正多边形的周长无限接近圆的周长,进而求得较为精确的圆周率(圆周率指周长与该圆直径的比率).刘徽计算圆周率是从正六边形开始的,易知圆的内接正六边形可分为六个全等的正三角形,每个三角形的边长均为圆的半径R,此时圆内接正六边形的周长为6R,此时若将圆内接正六边形的周长等同于圆的周长,可得圆周率为3,当正二十四边形内接于圆时,按照上述算法,可得圆周率为3.12(参考数据:cos15°≈0.966,$\sqrt{0.068}$≈0.26)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2-ax+ln(x+1)(a∈R).
(Ⅰ)当a=2时,求函数f(x)的极值点;
(Ⅱ)若函数f(x)在区间(0,1)上恒有f′(x)>x,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题p:?x∈R,x≥0的否定是(  )
A.¬p:?x∈R,x<0B.¬p:?x∈R,x≤0C.¬p:?x∈R,x<0D.¬p:?x∈R,x≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知实数x,y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{4x-y-4≤0}\end{array}\right.$,则$\frac{y+2}{x+1}$的最大值为(  )
A.3B.$\frac{1}{3}$C.2D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在命题“若|m|>|n|,则m2>n2”及该命题的逆命题、否命题、逆否命题中,真命题的个数为4.

查看答案和解析>>

同步练习册答案