13£®ÎÒ¹ú¹Å´úÊýѧ¼ÒÁõ»ÕÊǹ«ÔªÈýÊÀ¼ÍÊÀ½çÉÏ×î½Ü³öµÄÊýѧ¼Ò£¬ËûÔÚ¡¶¾ÅÕÂËãÊõÔ²ÌïÊõ¡·×¢ÖØ£¬ÓøîÔ²ÊõÖ¤Ã÷ÁËÔ²Ãæ»ýµÄ¾«È·¹«Ê½£¬²¢¸ø³öÁ˼ÆËãÔ²ÖÜÂʵĿÆÑ§·½·¨£¬Ëùν¡°¸îÔ²Êõ¡±£¬¼´Í¨¹ýÔ²ÄÚ½ÓÕý¶à±ßÐÎϸ¸îÔ²£¬²¢Ê¹Õý¶à±ßÐεÄÖܳ¤ÎÞÏÞ½Ó½üÔ²µÄÖܳ¤£¬½ø¶øÇóµÃ½ÏΪ¾«È·µÄÔ²ÖÜÂÊ£¨Ô²ÖÜÂÊÖ¸Öܳ¤Óë¸ÃÔ²Ö±¾¶µÄ±ÈÂÊ£©£®Áõ»Õ¼ÆËãÔ²ÖÜÂÊÊÇ´ÓÕýÁù±ßÐοªÊ¼µÄ£¬Ò×ÖªÔ²µÄÄÚ½ÓÕýÁù±ßÐοɷÖΪÁù¸öÈ«µÈµÄÕýÈý½ÇÐΣ¬Ã¿¸öÈý½ÇÐεı߳¤¾ùΪԲµÄ°ë¾¶R£¬´ËʱԲÄÚ½ÓÕýÁù±ßÐεÄÖܳ¤Îª6R£¬´ËʱÈô½«Ô²ÄÚ½ÓÕýÁù±ßÐεÄÖܳ¤µÈͬÓÚÔ²µÄÖܳ¤£¬¿ÉµÃÔ²ÖÜÂÊΪ3£¬µ±Õý¶þÊ®ËıßÐÎÄÚ½ÓÓÚԲʱ£¬°´ÕÕÉÏÊöËã·¨£¬¿ÉµÃÔ²ÖÜÂÊΪ3.12£¨²Î¿¼Êý¾Ý£ºcos15¡ã¡Ö0.966£¬$\sqrt{0.068}$¡Ö0.26£©

·ÖÎö Çó³ö±ß³¤Îª$\sqrt{{R}^{2}+{R}^{2}-2{R}^{2}cos15¡ã}$¡Ö0.26R£¬Öܳ¤Îª0.26¡Á24R=2¦ÐR£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£ºÕý¶þÊ®ËıßÐεÄÔ²ÐĽÇΪ15¡ã£¬Ô²µÄ°ë¾¶R£¬±ß³¤Îª$\sqrt{{R}^{2}+{R}^{2}-2{R}^{2}cos15¡ã}$¡Ö0.26R£¬
Öܳ¤Îª0.26¡Á24R=2¦ÐR£¬¡à¦Ð=3.12£¬
¹Ê´ð°¸Îª3.12£®

µãÆÀ ±¾Ì⿼²éÄ£Äâ·½·¨¹À¼Æ¸ÅÂÊ£¬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬±È½Ï»ù´¡£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Èô¼¯ºÏA={1£¬2}£¬Ôò¼¯ºÏAµÄËùÓÐ×Ó¼¯¸öÊýÊÇ£¨¡¡¡¡£©
A£®1B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®²»µÈʽ|x-3|-|x+1|¡Üa2-3a¶ÔÈÎÒâʵÊýxºã³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬1]¡È[4£¬+¡Þ£©B£®[-1£¬4]C£®[-4£¬1]D£®£¨-¡Þ£¬-4]¡È[1£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=|2x+1|-|x-4|£®
£¨1£©Çó²»µÈʽf£¨x£©¡Ý3µÄ½â¼¯M£»
£¨2£©Èôa¡ÊM£¬ÇóÖ¤£º|x+a|+|x-$\frac{1}{a}$|¡Ý$\frac{5}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÉèF1£¬F2·Ö±ðÊÇË«ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬PÊÇË«ÇúÏßÓÒÖ§ÉÏÒ»µã£¬Âú×ã$\overrightarrow{{PF}_{1}}$•$\overrightarrow{{PF}_{2}}$=0£¬ÇÒ3|$\overrightarrow{{PF}_{1}}$|=4|$\overrightarrow{{PF}_{2}}$|£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®2B£®$\sqrt{3}$C£®$\sqrt{2}$D£®5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Ä³Ð£ÎªÌá¸ßѧÉúÉíÌåËØÖÊ£¬¾ö¶¨¶Ô±ÏÒµ°àµÄѧÉú½øÐÐÉíÌåËØÖʲâÊÔ£¬Ã¿¸öͬѧ¹²ÓÐ4´Î²âÊÔ»ú»á£¬Èôij´Î²âÊԺϸñ¾Í²»ÓýøÐкóÃæµÄ²âÊÔ£¬ÒÑ֪ijͬѧÿ´Î²Î¼Ó²âÊԺϸñµÄ¸ÅÂÊ×é³ÉÒ»¸öÒÔ$\frac{1}{8}$Ϊ¹«²îµÄµÈ²îÊýÁУ¬ÈôËû²Î¼ÓµÚÒ»´Î²âÊÔ¾Íͨ¹ýµÄ¸ÅÂʲ»×ã$\frac{1}{2}$£¬Ç¡ºÃ²Î¼ÓÁ½´Î²âÊÔͨ¹ýµÄ¸ÅÂÊΪ$\frac{9}{32}$£®
£¨¢ñ£©Çó¸ÃͬѧµÚÒ»´Î²Î¼Ó²âÊÔ¾ÍÄÜͨ¹ýµÄ¸ÅÂÊ£»
£¨¢ò£©Çó¸Ãͬѧ²Î¼Ó²âÊԵĴÎÊýµÄ·Ö²¼ÁÐºÍÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{m}^{2}+16}$-$\frac{{y}^{2}}{4m-3}$=1µÄʵÖ᳤Ϊ10£¬Ôò¸ÃË«ÇúÏߵĽ¥½üÏßµÄбÂÊΪ£¨¡¡¡¡£©
A£®$¡À\frac{5}{4}$B£®$¡À\frac{4}{5}$C£®$¡À\frac{5}{3}$D£®$¡À\frac{3}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðÊÇa£¬b£¬c£¬cosC=$\frac{1}{9}$£¬ÇÒacosB+bcosA=2£¬Ôò¡÷ABCÃæ»ýµÄ×î´óֵΪ$\frac{\sqrt{5}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖª$\overrightarrow a=£¨{4£¬2}£©$£¬ÔòÓë$\overrightarrow a$·½ÏòÏà·´µÄµ¥Î»ÏòÁ¿µÄ×ø±êΪ£¨¡¡¡¡£©
A£®£¨2£¬1£©B£®£¨-2£¬-1£©C£®$£¨{\frac{{2\sqrt{5}}}{5}£¬\frac{{\sqrt{5}}}{5}}£©$D£®$£¨{-\frac{{2\sqrt{5}}}{5}£¬-\frac{{\sqrt{5}}}{5}}£©$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸