精英家教网 > 高中数学 > 题目详情
5.已知双曲线$\frac{{x}^{2}}{{m}^{2}+16}$-$\frac{{y}^{2}}{4m-3}$=1的实轴长为10,则该双曲线的渐近线的斜率为(  )
A.$±\frac{5}{4}$B.$±\frac{4}{5}$C.$±\frac{5}{3}$D.$±\frac{3}{5}$

分析 利用双曲线$\frac{{x}^{2}}{{m}^{2}+16}$-$\frac{{y}^{2}}{4m-3}$=1的实轴长为10,求出m,即可求出该双曲线的渐近线的斜率.

解答 解:由题意m2+16=25,4m-3>0,∴m=3,$\sqrt{4m-3}$=3,
∴该双曲线的渐近线的斜率为$±\frac{3}{5}$,
故选D.

点评 本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设$f(x)=(\sqrt{3}sin\frac{x}{2}+cos\frac{x}{2})sin(\frac{x}{2}+\frac{π}{2})-\frac{1}{2}$.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在△ABC中,角A,B,C所对的边分别为a,b,c,已知$f(A+\frac{π}{3})=-\frac{1}{2}$,$a=\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一条渐进线与直线x-y+3=0平行,则此双曲线的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.我国古代数学家刘徽是公元三世纪世界上最杰出的数学家,他在《九章算术圆田术》注重,用割圆术证明了圆面积的精确公式,并给出了计算圆周率的科学方法,所谓“割圆术”,即通过圆内接正多边形细割圆,并使正多边形的周长无限接近圆的周长,进而求得较为精确的圆周率(圆周率指周长与该圆直径的比率).刘徽计算圆周率是从正六边形开始的,易知圆的内接正六边形可分为六个全等的正三角形,每个三角形的边长均为圆的半径R,此时圆内接正六边形的周长为6R,此时若将圆内接正六边形的周长等同于圆的周长,可得圆周率为3,当正二十四边形内接于圆时,按照上述算法,可得圆周率为3.12(参考数据:cos15°≈0.966,$\sqrt{0.068}$≈0.26)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=sin(2x+$\frac{π}{6}$)+cos(2x-$\frac{π}{3}$),则f(x)的单调递增区间为(  )
A.(kπ-$\frac{7π}{12}$,kπ-$\frac{π}{12}$),k∈ZB.(kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$),k∈Z
C.(kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$),k∈ZD.(kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题p:?x∈R,x≥0的否定是(  )
A.¬p:?x∈R,x<0B.¬p:?x∈R,x≤0C.¬p:?x∈R,x<0D.¬p:?x∈R,x≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|x(x-2)=0},B={x∈Z|4x2-9≤0},则A∪B等于(  )
A.{-2,-1,0,1}B.{-1,0,1,2}C.[-2,2]D.{0,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设f(x)=x ln x-ax2+(2a-1)x,a∈R.
(Ⅰ)令g(x)=$\frac{f(x)}{x}$,求 g(x)的单调区间;
(Ⅱ)当$\frac{1}{2}$<a≤1时,证明:f(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数$f(x)=\frac{1}{1-x}+ln(1+x)$的定义域是(  )
A.(-∞,-1)B.(1,+∞)C.(-1,1)∪(1,+∞)D.(-∞,+∞)

查看答案和解析>>

同步练习册答案