精英家教网 > 高中数学 > 题目详情
9.若F1、F2是双曲线$\frac{{x}^{2}}{4}$-y2=1的两个焦点,点P(8,y0)在双曲线上,则△F1PF2的面积为5$\sqrt{3}$.

分析 根据题意,由双曲线的标准方程可得其焦点坐标,进而可得|F1F2|的值,又由点P(8,y0)在双曲线上,将P的坐标代入双曲线的方程,可得y0的值,进而由三角形面积公式计算可得答案.

解答 解:根据题意,双曲线的方程为:$\frac{{x}^{2}}{4}$-y2=1,
其焦点在x轴上,且c=$\sqrt{4+1}$=$\sqrt{5}$,
则其焦点坐标为(±$\sqrt{5}$,0),则|F1F2|=2$\sqrt{5}$,
又由点P(8,y0)在双曲线上,则有$\frac{{8}^{2}}{4}$-y02=1,解可得y0=±$\sqrt{15}$,
故△F1PF2的面积S=$\frac{1}{2}$×|y0|×|F1F2|=5$\sqrt{3}$,
故答案为:5$\sqrt{3}$.

点评 本题考查双曲线的几何性质,注意键是依据双曲线的方程分析焦点位置.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{{k}^{2}}$=1与双曲线$\frac{{x}^{2}}{k}$-$\frac{{y}^{2}}{3}$=1有相同的焦点,则k应满足的条件是(  )
A.k>3B.2<k<3C.k=2D.0<k<2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对于二次函数y=-4x2+8x-3,
(1)若x∈R
①指出图象的开口方向、对称轴方程、顶点坐标;
②求函数的最大值或最小值;
③分析函数的单调性.
(2)若x∈[-1,5),试确定y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{\sqrt{x+2}}$+lg(3-x)的定义域为集合A,集合B={x|1-m<x<3m-1}.
(1)求集合A,
(2)若A∩B=B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.不等式|x-3|-|x+1|≤a2-3a对任意实数x恒成立,则实数a的取值范围是(  )
A.(-∞,1]∪[4,+∞)B.[-1,4]C.[-4,1]D.(-∞,-4]∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在△ABC中,内角A,B,C的对边分别为a,b,c,且a>b,a>c.△ABC的外接圆半径为1,$a=\sqrt{3}$,若边BC上一点D满足BD=2DC,且∠BAD=90°,则△ABC的面积为$\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=|2x+1|-|x-4|.
(1)求不等式f(x)≥3的解集M;
(2)若a∈M,求证:|x+a|+|x-$\frac{1}{a}$|≥$\frac{5}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某校为提高学生身体素质,决定对毕业班的学生进行身体素质测试,每个同学共有4次测试机会,若某次测试合格就不用进行后面的测试,已知某同学每次参加测试合格的概率组成一个以$\frac{1}{8}$为公差的等差数列,若他参加第一次测试就通过的概率不足$\frac{1}{2}$,恰好参加两次测试通过的概率为$\frac{9}{32}$.
(Ⅰ)求该同学第一次参加测试就能通过的概率;
(Ⅱ)求该同学参加测试的次数的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知x=$\frac{1}{8}$,求值:$\frac{x+1}{{x}^{\frac{2}{3}}+1}$$+\frac{x-1}{{x}^{\frac{2}{3}}+{x}^{\frac{1}{3}}+1}$-$\frac{x-{x}^{\frac{2}{3}}}{{x}^{\frac{1}{3}}-1}$.

查看答案和解析>>

同步练习册答案