精英家教网 > 高中数学 > 题目详情
已知双曲线
y2
3
-x2=1与抛物线x2=ay有相同的焦点F,O为原点,点P是抛物线准线上一动点,点A在抛物线上,且|AF|=4,则|PA|+|PO|的最小值为(  )
A、2
13
B、4
2
C、3
13
D、4
6
考点:双曲线的简单性质
专题:综合题,圆锥曲线的定义、性质与方程
分析:利用抛物线的定义由|AF|=4得到A到准线的距离为4,即可求出点A的坐标,根据:“|PA|+|PO|”最小相当于在准线上找一点,使得它到两个定点的距离之和最小,最后利用平面几何的方法即可求出距离之和的最小值.
解答: 解:双曲线
y2
3
-x2=1的焦点为(0,±2),
∵双曲线
y2
3
-x2=1与抛物线x2=ay有相同的焦点F,∴a=±8.
∵|AF|=4,由抛物线的定义得,
∴A到准线的距离为4,即A点的纵坐标为-2(或2),
又点A在抛物线上,不妨取A的坐标A(4,-2);
坐标原点关于准线的对称点的坐标为B(0,4)
则|PA|+|PO|的最小值为:|AB|=2
13

故选:A.
点评:此题考查学生灵活运用抛物线的简单性质解决最小值问题,灵活运用点到点的距离、对称性化简求值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

用二分法求函数f(x)=lgx+x-3的一个零点,其参考数据如表:
f(2)≈-0.699f(3)≈0.477f(2.5)≈-0.102f(2.75)≈0.189
f(2.625)≈0.044f(2.5625)≈-0.029f(2.59375)≈0.008f(2.57813≈-0.011
根据此数据,可得方程lgx=3-x的一个近似解(精确到0.1)为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a>0,b>0则下列不等中不恒成立的是(  )
A、a+
1
a
≥2
B、a2+b2≥2(a+b-1)
C、
|a-b|
a
-
b
D、a3+b3≥2ab2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
x
5
3
sin
1
x
,x≠0
0,x=0
在x=0处f(x)(  )
A、不连续
B、连续,但不可导
C、可导,但导数不连续
D、可导,且导数连续

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式x(9-x)>0的解集是(  )
A、{x|x>0或x<9}
B、{x|x<0或x>9}
C、{x|0<x<9}
D、{x|-9<x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线a和平面α,则能推出a∥α的是(  )
A、存在一条直线b,a∥b,且b∥α
B、存在一条直线b,a⊥b,且b⊥α
C、存在一个平面β,a?β,且α∥β
D、存在一个平面β,a∥β,且α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P是正方体ABCD-A1B1C1D1的表面上一动点,且满足|PA|=2|PB|,设PD1与平面ABCD所成角为θ,则θ的最大值为(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左焦点F(-c,0)作圆x2+y2=a2的切线,切点为E,延长FE交抛物线y2=4cx于点P,O为原点,若|FE|=|EP|,则双曲线离心率为(  )
A、
1+
5
2
B、
1+
3
2
C、
4
2
-2
7
D、
4
2
+2
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知随机变量X服从正态分布N(0,σ2)且P(-2≤X≤0)=0.4,则P(X>2)=
 

查看答案和解析>>

同步练习册答案