精英家教网 > 高中数学 > 题目详情

(本小题满分13分)
已知是定义在上的奇函数,当
(1)求的解析式;
(2)是否存在实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由.

解:(1)设
是奇函数, …(3分) 又 …(4分)
故函数的解析式为: …(5分)
(2)假设存在实数,使得当
有最小值是  …(6分)
①当时,
由于故函数上的增函数。
解得(舍去)…(9分)
②当



[来源:学#科#网]


+



解得ks*5…(12分)u
综上所知,存在实数,使得当最小值4。…(13分)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)讨论函数的单调性;
(Ⅱ)设.如果对任意,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知的图像在点处的切线与直线平行.
(1)求a,b满足的关系式;
(2)若上恒成立,求a的取值范围;
(3)证明:      (

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为奇函数,且处取得极大值2.
(1)求函数的解析式;
(2)记,求函数的单调区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(I)判断函数的奇偶性并证明;
(II)若,证明:函数在区间上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,已知曲线与曲线交于点.直线与曲线分别相交于点.
(Ⅰ)写出四边形的面的函数关系
(Ⅱ)讨论的单调性,并求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)已知函数上为增函数,且,为常数,.
(Ⅰ)求的值;
(Ⅱ)若上为单调函数,求m的取值范围;
(Ⅲ)设,若在上至少存在一个,使得成立,求的m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数f(x)=
(1)对于任意实数x,f’(x)m恒成立,求m的最大值;
(2)若方程f(x)=0有且仅有一个实根,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)对于函数,若存在,使成立,则称的不动点。如果函数有且仅有两个不动点,且

(1)试求函数的单调区间;
(2)已知各项均为负的数列满足,求证:
(3)设为数列的前项和,求证:

查看答案和解析>>

同步练习册答案