精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
已知的图像在点处的切线与直线平行.
(1)求a,b满足的关系式;
(2)若上恒成立,求a的取值范围;
(3)证明:      (

(1),根据题意,即 …………………………………3分
(2)由(Ⅰ)知,,……………………………………………………4分

=  ………………………………………5分
①当时, ,
,则为减函数,存在
上不恒成立.                   ………………………………………6分
时,,当时,增函数,又
,∴恒成立.             …………………………………………7分
综上所述,所求的取值范围是 ………………………………………………………………8分
(3)有(Ⅱ)知当时,上恒成立.取 …………9分
, 
 …………………………………10分
 ……………………………………………………11分
上式中令n=1,2,3,…,n,并注意到:
然后n个不等式相加得到 ………………………………14分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知其中是自然对数的底 .
(1)若处取得极值,求的值;
(2)求的单调区间;
(3)设,存在,使得成立,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.
(1) 求的值;
(2) 若商品的成品为3元/千克, 试确定销售价格的值,使商场每日销售该商品所获得的利润最大

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中
在x=1处取得极值,求a的值;
的单调区间;
(Ⅲ)若的最小值为1,求a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知函数,,其中R.
(1)当a=1时,判断的单调性;
(2)若在其定义域内为增函数,求正实数的取值范围;
(3)设函数,当时,若,总有
成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=.
(1)求函数在区间上的值域T;
(2)是否存在实数,对任意给定的集合T中的元素t,在区间上总存在两个不同的,使得成立.若存在,求出的取值范围;若不存在,请说明理由;
(3
  

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知函数).
(I)当时,求在点处的切线方程;
(Ⅱ)求函数上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知是定义在上的奇函数,当
(1)求的解析式;
(2)是否存在实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数:
(1)证明:++2=0对定义域内的所有都成立;
(2)当的定义域为[+,+1]时,求证:的值域为[-3,-2];
(3)若,函数=x2+|(x-) | ,求的最小值

查看答案和解析>>

同步练习册答案