精英家教网 > 高中数学 > 题目详情

(本小题满分14分)对于函数,若存在,使成立,则称的不动点。如果函数有且仅有两个不动点,且

(1)试求函数的单调区间;
(2)已知各项均为负的数列满足,求证:
(3)设为数列的前项和,求证:

(1)设
    ∴    ∴

又∵   ∴    ∴   …… 3分 
于是
;  由
故函数的单调递增区间为
单调减区间为                      ……4分
(2)由已知可得,    当时,
两式相减得

时,,若,则这与矛盾
    ∴                      ……6分
于是,待证不等式即为。为此,我们考虑证明不等式

再令    由
∴当时,单调递增   ∴  于是
      ①
   由
∴当时,单调递增   ∴  于是
    ②
由①、②可知                 ……10分
所以,,即        ……11分
(3)由(2)可知  则
中令n=1,2,3…………..2010并将各式相加得

    

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
已知是定义在上的奇函数,当
(1)求的解析式;
(2)是否存在实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数:
(1)证明:++2=0对定义域内的所有都成立;
(2)当的定义域为[+,+1]时,求证:的值域为[-3,-2];
(3)若,函数=x2+|(x-) | ,求的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 ()(为自然对数的底数)
(1)求的极值
(2)对于数列,   ()
①  证明:
② 考察关于正整数的方程是否有解,并说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)设e为自然对数的底)。
(1)求pq的关系;
(2)若在其定义域为单调函数,求p的取值范围。
(3)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.已知函数,其中
(1)设函数,若在区间上不是单调函数,求的取值范围.
(2)设函数是否存在,对任意给定的非零实数,存在唯一的非零
实数使得成立,若存在,求的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)经销商用一辆J型卡车将某种水果从果园运送(满载)到相距400km的水果批发市场.据测算,J型卡车满载行驶时,每100km所消耗的燃油量u(单位:资、车损等其他费用平均每小时300元.已知燃油价格为每升(L)7.5元.
(1)设运送这车水果的费用为y(元)(不计返程费用),将y表示成速度v的函数关系式;
(2)卡车该以怎样的速度行驶,才能使运送这车水果的费用最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.
(Ⅰ)当时,求函数的表达式;
(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

下列四个图像所表示的函数,在点处连续的是

A)               (B)              (C)           (D

查看答案和解析>>

同步练习册答案