【题目】已知两个无穷数列和的前项和分别为, , , ,对任意的,都有.
(1)求数列的通项公式;
(2)若 为等差数列,对任意的,都有.证明: ;
(3)若 为等比数列, , ,求满足 的值.
【答案】(1)(2)
【解析】试题分析:利用题目提供的 方面的关系,借助转化为的关系,证明出满足等差数列定义,利用等差数列通项公式求出,进而得出, 成等差数列,写出,根据恒成立,得出和公差的要求,比较的大小可采用比较法; 是以为首项, 为公比的等比数列,求出和,根据题意求出的值.
试题解析:
(1)由,得,
即,所以.
由, ,可知.
所以数列是以为首项, 为公差的等差数列.
故的通项公式为.
(2)证法一:设数列的公差为,则,
由(1)知, .
因为,所以,即恒成立,
所以 即
又由,得,
所以
.
所以,得证.
证法二:设的公差为,假设存在自然数,使得,
则,即,
因为,所以.
所以,
因为,所以存在,当时, 恒成立.
这与“对任意的,都有”矛盾!
所以,得证.
(3)由(1)知, .因为 为等比数列,且, ,
所以是以为首项, 为公比的等比数列.
所以, .
则,
因为,所以,所以.
而,所以,即(*).
当, 时,(*)式成立;
当时,设,
则,
所以.
故满足条件的的值为和.
科目:高中数学 来源: 题型:
【题目】如图所示,在多面体中, 与均为边长为2的正方形, 为等腰直角三角形, ,且平面平面,平面平面.
(Ⅰ)求证:平面平面;
(Ⅱ)求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种产品的广告费支出x与销售额(单位:百万元)之间有如下对应数据:
如果y与x之间具有线性相关关系.
(1)作出这些数据的散点图;
(2)求这些数据的线性回归方程;
(3)预测当广告费支出为9百万元时的销售额.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面是边长是1的正方形,侧棱PA与底面成45°的角,M,N,分别是AB,PC的中点;
(1)求证:MN∥平面PAD;
(2)求四棱锥P﹣ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校在2014年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如下表所示.
组号 | 分组 | 频数 | 频率 |
第1组 | [160,165) | 5 | 0.050 |
第2组 | [165,170) | n | 0.350 |
第3组 | [170,175) | 30 | p |
第4组 | [175,180) | 20 | 0.200 |
第5组 | [180,185] | 10 | 0.100 |
合计 | 100 | 1.000 |
(1)求频率分布表中n,p的值,并补充完整相应的频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样的方法抽取6名学生进入第二轮面试,则第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定从6名学生中随机抽取2名学生接受甲考官的面试,求第4组至少有1名学生被甲考官面试的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程为(为参数),以坐标原点为极点, 轴的非负半轴为极轴建立极坐标系,圆的极坐标方程为,直线与圆交于, 两点.
(1)求圆的直角坐标方程及弦的长;
(2)动点在圆上(不与, 重合),试求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,O为坐标原点,A、B、C三点满足 = + .
(1)求证:A、B、C三点共线;
(2)已知A(1,cosx),B(1+cosx,cosx)(0≤x≤ ),f(x)= ﹣(2m+ )| |的最小值为﹣ ,求实数m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com