精英家教网 > 高中数学 > 题目详情
20.若命题p:?x0∈R,ax02+4x0+a≥-2x02+1是真命题,求实数a的取值范围.

分析 若命题p:?x0∈R,ax02+4x0+a≥-2x02+1是真命题,则a+2≥0,或$\left\{\begin{array}{l}a+2<0\\△=16-4(a+2)(a-1)≥0\end{array}\right.$,解得答案.

解答 解:若命题p:?x0∈R,ax02+4x0+a≥-2x02+1是真命题,
则:?x0∈R,(a+2)x02+4x0+a-1≥0是真命题,
故a+2≥0,或$\left\{\begin{array}{l}a+2<0\\△=16-4(a+2)(a-1)≥0\end{array}\right.$,
解得:a≥-3.

点评 本题以命题的真假判断与应用为载体,考查了特称命题,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=α,且α∈[$\frac{π}{12}$,$\frac{π}{4}$],则该椭圆离心率的最大值为(  )
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.计算:sin160°cos10°-cos160°sin10°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}是等差数列,cn=an+2an+1-an+1an,(n∈N*).
(1)证明数列{cn}是等差数列;
(2)如果a1+a3+…+a23=120,a2+a4+…+a24=132-12k,(k为常数),求数列{cn}的通项公式;
(3)在(2)的条件下,若数列{cn}的前n项和为Sn,问是否存在这样的实数k,使Sn当且仅当n=12时取得最小值,若存在,求出k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知奇函数f(x)的定义域为(-∞,0)∪(0,+∞),当x>0时,f(x)=ln(|x-1|+1),则函数f(x)的图象大致为(  )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知g(x)=mx,G(x)=lnx.
(1)设f(x)=$\frac{G(x)}{x}$+1,求f(x)在点(1,f(1))处的切线方程及f(x)的单调区间;
(2)若G(x)+x+2≤g(x)恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.执行程序框图,则最后输出的i=9

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.给出下列四个命题:
①命题p:?x∈R,sinx≤1.
②当a≥1时,不等式|x-4|+|x-3|<a的解集为非空.
③当x>1时,有$lnx+\frac{1}{lnx}≥2$.
④设复数z满足(1-i)$\overline{z}$=2i,则z=-1-i.
其中真命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设各项均为正数的数列{an}的前n项和为Sn满足$a_{n+1}^2=4{S_n}+4n+1,n∈{N^*}$,且a2,a5,a14恰好是等比数列{bn}的前三项.记数列{bn}的前n项和为Tn,若对任意的n∈N*,不等式$({T_n}+\frac{3}{2})•k≥3n-6$恒成立,则实数k的取值范围是$[\frac{2}{27},+∞)$.

查看答案和解析>>

同步练习册答案