| A. | $\frac{{\sqrt{6}}}{3}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | 1 |
分析 由椭圆的焦点在x轴上,设左焦点为F1,根据椭圆的定义:|AF|+|AF1|=2a,∠ABF=α,则:∠AF1F=α.则2a=2ccosα+2csinα,即a=(cosα+sinα)c,由椭圆的离心率e=$\frac{c}{a}$=$\frac{1}{sinα+cosα}$=$\frac{1}{\sqrt{2}sin(α+\frac{π}{4})}$,由α∈[$\frac{π}{12}$,$\frac{π}{4}$],根据正弦函数的图象及性质,求得椭圆离心率的取值范围,即可求得椭圆离心率的最大值.
解答 解:已知椭圆$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)焦点在x轴上,
椭圆上一点A关于原点的对称点为点B,F为其右焦点,设左焦点为F1,
则:连接AF,AF1,AF,BF
所以:四边形AFF1B为长方形.
根据椭圆的定义:|AF|+|AF1|=2a,
∠ABF=α,则:∠AF1F=α.
∴2a=2ccosα+2csinα,即a=(cosα+sinα)c,
由椭圆的离心率e=$\frac{c}{a}$=$\frac{1}{sinα+cosα}$=$\frac{1}{\sqrt{2}sin(α+\frac{π}{4})}$,
由α∈[$\frac{π}{12}$,$\frac{π}{4}$],
α+$\frac{π}{4}$∈[$\frac{π}{3}$,$\frac{π}{2}$],
sin(α+$\frac{π}{4}$)∈[$\frac{\sqrt{3}}{2}$,1],
$\sqrt{2}$sin(α+$\frac{π}{4}$)∈[$\frac{\sqrt{6}}{2}$,$\sqrt{2}$],
$\frac{1}{\sqrt{2}sin(α+\frac{π}{4})}$∈[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{3}$],
∴e∈[$\frac{\sqrt{2}}{2}$,$\frac{\sqrt{6}}{3}$],
故椭圆离心率的最大值$\frac{\sqrt{6}}{3}$.
故选A.![]()
点评 本题考查了椭圆的定义及其性质、两角差的正弦公式、正弦函数的单调性,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | b>a>c | C. | c>a>b | D. | a>c>b |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,2] | B. | [0,2] | C. | [-2,2] | D. | (-2,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 网购金额(元) | 频数 | 频率 |
| (0,500] | 5 | 0.05 |
| (500,1000] | x | p |
| (1000,1500] | 15 | 0.15 |
| (1500,2000] | 25 | 0.25 |
| (2000,2500] | 30 | 0.3 |
| (2500,3000] | y | q |
| 合计 | 100 | 1.00 |
| x | 网龄3年以上 | 网龄不足3年 | 合计 |
| 购物金额在2000元以上 | 35 | ||
| 购物金额在2000元以下 | 20 | ||
| 总计 | 100 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{271}{72}$ | B. | $\frac{23}{18}$ | C. | $\frac{29}{45}$ | D. | $\frac{13}{9}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com