精英家教网 > 高中数学 > 题目详情

【题目】为了解少年儿童的肥胖是否与常喝碳酸饮料有关,现对40名小学六年级学生进行了问卷调查,并得到如下列联表.平均每天喝以上为常喝,体重超过肥胖”.已知在全部40人中随机抽取1人,抽到肥胖学生的概率为.

常喝

不常喝

合计

肥胖

3

不肥胖

5

合计

40

1)请将上面的列联表补充完整;

2)是否有的把握认为肥胖与常喝碳酸饮料有关?请说明你的理由.

参考公式:

①卡方统计量,其中为样本容量;

②独立性检验中的临界值参考表:

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)列联表见解析;(2)有的把握认为肥胖与常喝碳酸饮料有关.

【解析】

1)由抽到肥胖学生的概率为可知肥胖的学生有10,进而补全列联表即可;

2)利用公式求得的值,7.879比较即可判断

1)设肥胖学生共名,则,解得,

∴肥胖学生共有10,

则列联表如下:

常喝

不常喝

合计

肥胖

7

3

10

不肥胖

5

25

30

合计

12

28

40

2)由已知数据可求得,,

因此,有的把握认为肥胖与常喝碳酸饮料有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一般来说,一个班级的学生学号是从1 开始的连续正整数,在一次课上,老师随机叫起班上8名学生,记录下他们的学号是:3、21、17、19、36、8、32、24,则该班学生总数最可能为( )

A. 39人B. 49人C. 59人D. 超过59人

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市从现有甲、乙两种酸奶的日销售量(单位:箱)的1200个数据(数据均在区间内)中,按照的比例进行分层抽样,统计结果按,分组,整理如下图:

1)求频率分布直方图(图乙)中的值,并估计1200个日销售量中,数据在区间中的个数.

2)从日销售量在的甲种酸奶的数据样本中抽取3个,记在内的数据个数为,求的分布列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PABD

(2)求证:平面BDE平面PAC

(3)PA平面BDE时,求三棱锥EBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列均为递增数列,的前项和为的前项和为.且满足,则下列说法正确的有( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过原点的动直线与圆:相交于不同的两点.

1)求圆的圆心坐标;

2)求线段的中点的轨迹的方程;

3)是否存在实数,使得直线:与曲线只有一个交点?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四色猜想是世界三大数学猜想之一,1976年数学家阿佩尔与哈肯证明,称为四色定理.其内容是:任意一张平面地图只用四种颜色就能使具有共同边界的国家涂上不同的颜色.”用数学语言表示为将平面任意地细分为不相重叠的区域,每一个区域总可以用1234四个数字之一标记,而不会使相邻的两个区域得到相同的数字.”如图,网格纸上小正方形的边长为1,粗实线围城的各区域上分别标有数字1234的四色地图符合四色定理,区域和区域标记的数字丢失.若在该四色地图上随机取一点,则恰好取在标记为1的区域的概率所有可能值中,最大的是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数同时在处取得极小值,则称为一对“函数”.

(1)试判断是否是一对“函数”;

(2)若是一对“函数”.

①求的值;

②当时,若对于任意,恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前n项和为,且满足,数列中,,对任意正整数.

1)求数列的通项公式;

2)是否存在实数,使得数列是等比数列?若存在,请求出实数及公比q的值,若不存在,请说明理由;

3)求数列n项和.

查看答案和解析>>

同步练习册答案