精英家教网 > 高中数学 > 题目详情

【题目】某校高一年级某次数学竞赛随机抽取100名学生的成绩,分组为[50,60),[60,70),[70,80),[80,90),[90,100],统计后得到频率分布直方图如图所示:

(1)试估计这组样本数据的众数和中位数(结果精确到0.1);

(2)年级决定在成绩[70,100]中用分层抽样抽取6人组成一个调研小组,对高一年级学生课外学习数学的情况做一个调查,则在[70,80),[80,90),[90,100]这三组分别抽取了多少人?

(3)现在要从(2)中抽取的6人中选出正副2个小组长,求成绩在[80,90)中至少有1人当选为正、副小组长的概率.

【答案】(1)65,73.3;(2)3,2,1;(3)

【解析】试题分析:(1)由频率分布直方图中面积最大的矩形中点可得众数、左右面积各为0.5的分界处为中位数.
(2)先求出成绩为[70,80)、[80,90)、[90,100]这三组的频率,由此能求出[70,80)、[80,90)、[90,100]这三组抽取的人数.
(3)由(2)知成绩在[70,80)有3人,分别记为a,b,c;成绩在[80,90)有2人,分别记为d,e;成绩在[90,100]1人,记为f.由此利用列举法能求出成绩在[80,90)中至少有1人当选为正、副小组长的概率.

试题解析:

(1)由频率分布直方图得:众数为:=65.

成绩在[50,70)内的频率为:(0.005+0.035)×10=0.4,

成绩在[70,80)内的频率为:0.03×10=0.3,

中位数为:70+×10≈73.3.

(2)成绩为[70,80)、[80,90)、[90,100]这三组的频率分别为0.3,0.2,0.1,

∴[70,80)、[80,90)、[90,100]这三组抽取的人数分别为3人,2人,1人.

(3)由(2)知成绩在[70,80)有3人,分别记为a,b,c;

成绩在[80,90)有2人,分别记为d,e;成绩在[90,100]有1人,记为f.

从(2)中抽取的6人中选出正副2个小组长包含的基本事件有种,分别为:

ab,ba,ac,ca,ad,da,ae,ea,af,fa,bc,cb,bd,db,be,eb,bf,fb,cd,dc,ce,ec,cf,fc,de,ed,df,fd,ef,fe,

记“成绩在[80,90)中至少有1人当选为正、副小组长”为事件Q,

则事件Q包含的基本事件有18种,

成绩在[80,90)中至少有1人当选为正、副小组长的概率P(Q)=

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数是关于的偶函数.

(1)求的值;

(2)求证: 对任意实数,函数的图象与函数的图象最多只有一个交点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方形的对角线相交于点,将沿对角线折起,使得平面平面(如图),则下列命题中正确的是( )

A. 直线直线,且直线直线

B. 直线平面,且直线平面

C. 平面平面,且平面平面

D. 平面平面,且平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐.已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是
(1)求油罐被引爆的概率;
(2)如果引爆或子弹打光则停止射击,设射击次数为ξ.求ξ的分布列及数学期望E(ξ).( 结果用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,直线y= x为曲线y=f(x)的切线(e为自然对数的底数).
(1)求实数a的值;
(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x﹣ }(x>0),若函数h(x)=g(x)﹣cx2为增函数,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,底面ABCD是一直角梯形,BA⊥AD,AD∥BC,AB=BC=2,PA=3,PA⊥底面ABCD,E是棱PD上异于P,D的动点.设 =m,则“0<m<2”是三棱锥C﹣ABE的体积不小于1的(

A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0且a≠1,若函数f(x)=loga[ax2﹣(2﹣a)x+3]在[ ,2]上是增函数,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半径分别为 Rr 的两个圆外切于点 P P 到这两圆的一条外公切线的距离等于d .求证.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知空间中三点A(-2,0,2),B(-1,1,2),C(-3,0,4),设=,=.

(1)求的夹角的余弦值; (2)若与k-2互相垂直,求实数k的值.

查看答案和解析>>

同步练习册答案