精英家教网 > 高中数学 > 题目详情
19.在△ABC中,BC边上的高所在直线的方程为x+2y+3=0,∠A的平分线所在直线的方程为y=0,若点B的坐标为(-1,-2),分别求点A和点C的坐标.

分析 利用角平分线的性质、相互垂直的直线斜率之间的关系即可得出.

解答 解:由$\left\{\begin{array}{l}{x+2y+3=0}\\{y=0}\end{array}\right.$,解得x=-3,y=0.
所以点A的坐标为(-3,0).…(5分)
直线AB的斜率kAB=$\frac{0-(-2)}{-3-(-1)}$=-1.…(6分)
又∠A的平分线所在的直线为x轴,
所以直线AC的斜率kAC=-kAB=1.…(7分)
因此,直线AC的方程为y-0=[x-(-3)],即y=x+3①…(8分)
因为BC边上的高所在直线的方程为x+2y+3=0,所以其斜率为-$\frac{1}{2}$.…(9分)
所以直线BC的斜率kAC=2.…(10分)
所以直线BC的方程为y+2=2(x+1),即y=2x  ②…(11分)
联立①②,解得x=3,y=6,所以C(3,6).…(12分)

点评 本题考查了角平分线的性质、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知在△ABC中,边a=$\sqrt{2}$,边c=2,角A=30°,求边b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.有3个活动小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学不在一个兴趣小组的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知实数x,y满足$\left\{\begin{array}{l}{y≥x}\\{x+y≤4}\\{2x+y-3≥0}\end{array}\right.$,则Z=y-($\frac{1}{2}$)x的取值范围为[$\frac{1}{2}$,$-lo{g}_{2}ln2-\frac{1}{ln2}+4$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知p:0≤m≤3,q:(m-2)(m-4)≤0,若p∧q为假,p∨q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$,则|$\overrightarrow{a}$+$\overrightarrow{b}$|等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.$\sqrt{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.以下命题中,不正确的个数为(  )
①$|\overrightarrow a|-|\overrightarrow b|=|\overrightarrow a+\overrightarrow b|$是$\overrightarrow a,\overrightarrow b$共线的充要条件;
②若$\overrightarrow a∥\overrightarrow b$,则存在唯一的实数λ,使$\overrightarrow a=λ\overrightarrow b$;
③若$\overrightarrow a•\overrightarrow b=\overrightarrow b•\overrightarrow c=0$,则$\overrightarrow a=\overrightarrow c$;
④若$\overrightarrow a,\overrightarrow b,\overrightarrow c$为空间的一个基底,则$\overrightarrow a+\overrightarrow b,\overrightarrow b+\overrightarrow c,\overrightarrow c+\overrightarrow a$构成空间的另一个基底;
⑤$|(\overrightarrow a•\overrightarrow b)•\overrightarrow c|=|\overrightarrow a|•|\overrightarrow b|•|\overrightarrow c|$.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=cos(ωx+φ)(ω>0,-π<φ<0)的最小正周期为π,且它的图象过点($\frac{π}{6}$,$\frac{1}{2}$).
(Ⅰ)求ω,φ的值;
(Ⅱ)求函数y=f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.${log_2}\sqrt{2}+{log_2}\frac{{\sqrt{2}}}{2}$=0.

查看答案和解析>>

同步练习册答案