精英家教网 > 高中数学 > 题目详情
(2013•崇明县一模)如图,四面体ABCD中,O、E分别是BD、BC的中点,AO⊥平面BCD,CA=CB=CD=BD=2.
(1)求三棱锥A-BCD的体积;
(2)求异面直线AE与CD所成角的大小.
分析:(1)利用等边三角形的性质、线面垂直的性质定理、勾股定理、三棱锥的体积计算公式即可得出;
(2)利用三角形的中位线定理、异面直线所成的角、线面垂直的性质定理即可求出.
解答:解:(1)在等边三角形△BCD中,BO=OD=1,∴CO=
3

∵AO⊥平面BCD,∴AO⊥OC.
在Rt△AOC中,由勾股定理得OA=
22-(
3
)2
=1.
VA-BCD=
1
3
S△BCD×OA
=
1
3
×
3
4
×22×1
=
3
3

(2)连接OE,∵O、E为中点,∴OE∥CD,OE=
1
2
CD=1
,∴∠AEO或其补角为异面直线AE与CD所成角.
∵AO⊥平面BCD,∴AO⊥OE.
在直角三角形AEO中,∵OA=OE,
∠AEO=
π
4
,所以异面直线AE与CD所成角的大小为
π
4
点评:熟练掌握等边三角形的性质、线面垂直的性质定理、勾股定理、三棱锥的体积计算公式、三角形的中位线定理、异面直线所成的角是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•崇明县一模)(x2-
1x
)5
展开式中x4的系数是
10
10
.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县一模)已知数列{an},记A(n)=a1+a2+a3+…+an,B(n)=a2+a3+a4+…+an+1,C(n)=a3+a4+a5+…+an+2,(n=1,2,3,…),并且对于任意n∈N*,恒有an>0成立.
(1)若a1=1,a2=5,且对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,求数列{an}的通项公式;
(2)证明:数列{an}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县一模)设复数z(2-i)=11+7i(i为虚数单位),则z=
3+5i
3+5i

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县一模)若圆锥的侧面展开图是半径为1cm、圆心角为180°的半圆,则这个圆锥的轴截面面积等于
3
4
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•崇明县一模)数列{an}的通项公式是an=
1
n+1
 (n=1,2)
1
3n
 (n>2)
,前n项和为Sn,则
lim
n→∞
Sn
=
8
9
8
9

查看答案和解析>>

同步练习册答案