下列说法:
①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;
②设有一个回归方程
=3-5x,变量x增加一个单位时,y平均增加5个单位;
③线性回归方程
=
必过点(
);
④在一个2×2列联表中,由计算得K2=13.079,则有99%的把握确认这两个变量间有关系.
其中错误的个数是( )
A.0 B.1 C.2 D.3
科目:高中数学 来源: 题型:
已知椭圆C1:
+
=1(a>b>0)与双曲线C2:x2-
=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则( )
(A)a2=
(B)a2=13
(C)b2=
(D)b2=2
查看答案和解析>>
科目:高中数学 来源: 题型:
当前,某城市正分批修建经济适用房以解决低收入家庭住房紧张问题.已知甲、乙、丙三个社区现分别有低收入家庭360户、270户、180户,若第一批经济适用房中有90套住房用于解决这三个社区中90户低收入家庭的住房问题,现采用分层抽样的方法决定各社区户数,则应从乙社区中抽取低收入家庭的户数为( )
A.40 B.36 C.30 D.20
查看答案和解析>>
科目:高中数学 来源: 题型:
两个变量y与x的回归模型中,分别选择了4个不同模型,计算出它们的相关指数R2如下,其中拟合效果最好的模型是( )
A.模型1(相关指数R2为0.97)
B.模型2(相关指数R2为0.89)
C.模型3(相关指数R2为0.56)
D.模型4(相关指数R2为0.45)
查看答案和解析>>
科目:高中数学 来源: 题型:
某工厂用甲、乙两种不同工艺生产一大批同一种零件,零件尺寸均在[21.7,22.3](单位:cm)之间,把零件尺寸在[21.9,22.1)的记为一等品,尺寸在[21.8,21.9)∪[22.1,22.2)的记为二等品,尺寸在[21.7,21.8)∪[22.2,22.3]的记为三等品,现从甲、乙工艺生产的零件中各随机抽取100件产品,所得零件尺寸的频率分布直方图如图所示:
![]()
![]()
根据上述数据完成下列2×2列联表,根据此数据你认为选择不同的工艺与生产出一等品是否有关?
|
| 甲工艺 | 乙工艺 | 合计 |
| 一等品 | |||
| 非一等品 | |||
| 合计 |
查看答案和解析>>
科目:高中数学 来源: 题型:
某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30.第6小组的频数是7.
(1)求这次铅球测试成绩合格的人数;
(2)若由直方图来估计这组数据的中位数,指出它在第几组内,并说明理由;
(3)若参加此次测试的学生中,有9人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加“毕业运动会”,已知a、b的成绩均为优秀,求两人至少有1人入选的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com