【题目】(1)经统计,在某储蓄所一个营业窗口排队等候的人数及相应概率如下:
排队人数 | 0 | 1 | 2 | 3 | 4 | 5人及5人以上 |
概率 |
求至少3人排队等候的概率是多少?
(2)在区间上随机取两个数m,n,求关于x的一元二次方程有实根的概率.
【答案】(1);(2).
【解析】
(1)根据和事件概率公式可直接求得结果;
(2)在平面直角坐标系中,点构成面积为的正方形区域;根据一元二次方程有实根,可确定,结合,可根据线性规划知识得到可行域,且其面积为;根据几何概型概率公式求得结果.
(1)设至少人排队等候的概率为,有人排队等候的概率为,有人排队等候的概率为,有人及人以上排队等候的概率为
则
(2)在平面直角坐标系中,以轴和轴分别表示的值
在内与图中正方形内的点一一对应,即正方形内的所有点构成全部试验结果的区域,其面积为
设事件为“关于x的一元二次方程有实根”,则有
所对应的区域为图中的阴影部分
阴影部分的面积为
故关于的一元二次方程有实根的概率为
科目:高中数学 来源: 题型:
【题目】给出下列四个说法,其中正确的是( )
A.命题“若,则”的否命题是“若,则”
B.“”是“双曲线的离心率大于”的充要条件
C.命题“,”的否定是“,”
D.命题“在中,若,则是锐角三角形”的逆否命题是假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列满足:对任意两个正整数,与至少有一个成立,则称这个数列为“和谐数列”.
(Ⅰ)求证:若数列为等差数列,则为“和谐数列”;
(Ⅱ)求证:若数列为“和谐数列”,则数列从第项起为等差数列;
(Ⅲ)若是各项均为整数的“和谐数列”,满足,且存在使得,,求p的所有可能值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十七世纪,法国数学家费马提出猜想;“当整数时,关于、、的方程没有正整数解”,经历三百多年,1995年英国数学家安德鲁怀尔斯给出了证明,使它终成费马大定理,则下面命题正确的是( )
①对任意正整数,关于、、的方程都没有正整数解;
②当整数时,关于、、的方程至少存在一组正整数解;
③当正整数时,关于、、的方程至少存在一组正整数解;
④若关于、、的方程至少存在一组正整数解,则正整数;
A.①②/span>B.①③C.②④D.③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋子中有四张卡片,分别写有“瓷、都、文、明”四个字,有放回地从中任取一张卡片,将三次抽取后“瓷”“都”两个字都取到记为事件,用随机模拟的方法估计事件发生的概率.利用电脑随机产生整数0,1,2,3四个随机数,分别代表“瓷、都、文、明”这四个字,以每三个随机数为一组,表示取卡片三次的结果,经随机模拟产生了以下18组随机数:
232 | 321 | 230 | 023 | 123 | 021 | 132 | 220 | 001 |
231 | 130 | 133 | 231 | 031 | 320 | 122 | 103 | 233 |
由此可以估计事件发生的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,直线与E交于A、B两点,且,其中O为原点.
(1)求抛物线E的方程;
(2)点C坐标为,记直线CA、CB的斜率分别为,证明: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从装有大小相同的2个红球和6个白球的袋子中,每摸出2个球为一次试验,直到摸出的球中有红球(不放回),则试验结束.
(1)求第一次试验恰摸到一个红球和一个白球概率;
(2)记试验次数为,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)若曲线在处的切线与直线平行,求实数的值;
(Ⅱ)若函数在定义域上为增函数,求实数的取值范围;
(Ⅲ)若有两个极值点,且,,若不等式恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com