精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
已知一四棱锥P-ABCD的三视图如下,E是侧棱PC上的动点。
(1)求四棱锥P-ABCD的体积;
(2)若点E为PC的中点,,求证EO//平面PAD;
(3)是否不论点E在何位置,都有BD⊥AE?证明你的结论。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题共14分)在四棱锥中,底面是矩形,平面. 以的中点为球心、为直径的球面交于点,交于点.
(1)求证:平面⊥平面      
(2)求直线与平面所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,直三棱柱ABC—A1B1C1的底面是等腰直角三角形,∠A1C1B1=90°,A1C1=1,AA1=,D是线段A1B的中点.                                       
(1)证明:面⊥平面A1B1BA;
(2)证明:
(3)求棱柱ABC—A1B1C1被平面分成两部分
的体积比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分10分)如图,四棱锥的底面是正方形,每条侧棱长都是底面边长的倍,P为侧棱SD上的点。
(1)若,求二面角的大小;

(2)在侧棱SC上是否存在一点E,使得,若存在,求的值;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四边形为矩形,分别是线段
的中点,平面(1)求证:
(2)设点上,且平面,试确定点的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

三棱锥的两个面是边长为的等边三角形,另外两个面是等腰直角三角形,则这个三棱锥的体积为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题


三棱锥中,分别是棱的中点,,,,,则异面直线所成的角为                           (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)如图,在底面是菱形的四棱锥P—ABCD中,∠ABC=600,PA=AC=a,PB=PD=,点E在PD上,且PE:ED=2:1.
(1)证明:PA⊥平面ABCD;
(2)求以AC为棱,EAC与DAC为面的二面角的大小. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,正方体中,为棱的中点,则在平面内过点且与直线角的直线有(  )
A.0条B.1条C.2条D.无数条

查看答案和解析>>

同步练习册答案