精英家教网 > 高中数学 > 题目详情
1.已知函数f(x)=-x2+2kx-4,若对任意x∈R,f(x)-|x+1|-|x-1|≤0恒成立,则实数k的取值范围是[-3,3].

分析 由题意可得2kx≤|x+1|+|x-1|+x2+4恒成立,讨论x=0,x>0,x<0,去掉绝对值,运用基本不等式和对勾函数的单调性,求得最值,即可得到所求k的范围.

解答 解:对任意x∈R,f(x)-|x+1|-|x-1|≤0恒成立,
即为2kx≤|x+1|+|x-1|+x2+4恒成立,
若x=0,则0≤1+1+0+4=6恒成立;
若x>0,则2k≤x+$\frac{4}{x}$+|1+$\frac{1}{x}$|+|1-$\frac{1}{x}$|,
令g(x)=x+$\frac{4}{x}$+|1+$\frac{1}{x}$|+|1-$\frac{1}{x}$|,
当x≥1时,g(x)=x+$\frac{4}{x}$+1+$\frac{1}{x}$+|1-$\frac{1}{x}$|=2+(x+$\frac{4}{x}$)≥2+2$\sqrt{x•\frac{4}{x}}$=6,
(当且仅当x=2时,取得等号),
当0<x<1时,g(x)=x+$\frac{6}{x}$在(0,1)递减,可得g(x)>7,
则x>0时,g(x)的最小值为6,
可得2k≤6,即k≤3;
若x<0,则2k≥x+$\frac{4}{x}$+$\frac{|x-1|+|x+1|}{x}$,
令h(x)=x+$\frac{4}{x}$+$\frac{|x-1|+|x+1|}{x}$,
当x<-1时,h(x)=x+$\frac{4}{x}$-1+$\frac{1}{x}$-1-$\frac{1}{x}$=-2+(x+$\frac{4}{x}$)≤-2-2$\sqrt{x•\frac{4}{x}}$=-6,
(当且仅当x=-2时,取得等号),
当-1≤x<0时,h(x)=x+$\frac{6}{x}$在[-1,0)递减,可得g(x)≤-7,
则x<0时,g(x)的最大值为-6,
可得2k≥-6,即k≥-3.
综上可得,k的范围是[-3,3].
故答案为:[-3,3].

点评 本题考查不等式恒成立问题的解法,注意运用分类讨论的思想方法,以及基本不等式和函数的单调性,考查化简整理的运算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{(x+1)(x+a)}{x}$为奇函数.
(1)求实数a的值;
(2)利用函数单调性的定义证明函数在区间(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,AB=5,AC=7,∠A=60°,G是重心,过G的平面α与BC平行,AB∩α=M,AC∩α=N,则MN=(  )
A.$\frac{8}{3}$B.$\frac{3}{8}$C.$\frac{4}{3}$D.$\frac{{2\sqrt{39}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{a}$=($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$),$\overrightarrow{b}$=(1,$\sqrt{3}$),$\overrightarrow{x}$=$\overrightarrow{a}$+(t2-3)$\overrightarrow{b}$,$\overrightarrow{y}$=-k$\overrightarrow{a}$+t$\overrightarrow{b}$,若$\overrightarrow{x}$与$\overrightarrow{y}$垂直,则k可用t的表达式表示为k=4t(t2-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线l:(m-2)x-y-3m+5=0(m∈R)和圆C:x2+y2-8x+4y+16=0.
(1)若m∈[1,2],求直线l的倾斜角的取值范围;
(2)设直线l和圆C相交于A,B两点,求以AB为直径且面积最小的圆的标准方程,并求出对应的m值;
(3)直线l能否将圆C分割成弧长的比值为$\frac{1}{2}$的两段圆弧?如果能,请求出直线l的方程;如果不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知动圆Q过定点F(0,-1),且与直线l:y=1相切,椭圆N的对称轴为坐标轴,O点为坐标原点,F是其一个焦点,又点A(0,2)在椭圆N上.
(Ⅰ)求动圆圆心Q的轨迹M的标准方程和椭圆N的标准方程;
(Ⅱ)若过F的动直线m交椭圆N于B,C点,交轨迹M于D,E两点,设S1为△ABC的面积,S2为△ODE的面积,令Z=S1S2,试求Z的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.在数列{an}中,a1=2且$|{\begin{array}{l}1&3\\{{a_{n+1}}}&{a_n}\end{array}}|$=0,若Sn是{an}的前n项和,则$\lim_{n→∞}{S_n}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知复数z1=1-i,z2=1+i,则$\frac{{{z_1}•{z_2}}}{i}$的虚部为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,a,b,c分别为角A,B,C所对应的边,若a,b,c成等比,则角B的取值范围是(0,$\frac{π}{3}$].

查看答案和解析>>

同步练习册答案