| A. | $\frac{8}{3}$ | B. | $\frac{3}{8}$ | C. | $\frac{4}{3}$ | D. | $\frac{{2\sqrt{39}}}{3}$ |
分析 由已知AB=5,AC=7,∠A=60°利用余弦定理可求BC,根据线面平行的性质定理可得,MN∥BC,且G是△ABC的重心可得MN=$\frac{2}{3}$BC,从而可求MN.
解答 解:如图,在△ABC中,由余弦定理知BC=$\sqrt{25+49-2×5×7×\frac{1}{2}}$=$\sqrt{39}$,![]()
∵BC∥α,AB∩α=M,AC∩α=N,
根据线面平行的性质定理可得,MN∥BC,
又G是△ABC的重心,
∴MN=$\frac{2}{3}$BC=$\frac{2\sqrt{39}}{3}$.
故选:D.
点评 本题主要考查了余弦定理解决三角形中两边和夹角求第三边,直线与平面平行的性质定理的运用,三角形的重心的性质等知识的运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9 | B. | 10 | C. | 11 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-2,+∞) | B. | [-2,2] | C. | (-∞,-2] | D. | [-$\frac{5}{2}$,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com