精英家教网 > 高中数学 > 题目详情
3.已知△ABC的三个角A,B,C所对的边分别是a,b,c,且3bcosA-3acosB=c,则下列结论正确的是(  )
A.tanB=2tanAB.tanA=2tanBC.tanB•tanA=2D.tanA+tanB=2

分析 由题意和正弦定理可得3sinBcosA-3sinAcosB=sinC=sin(A+B),由三角函数的和差角公式及弦化切的思想可得.

解答 解:∵△ABC的三个角A,B,C所对的边分别是a,b,c,且3bcosA-3acosB=c,
∴由正弦定理可得3sinBcosA-3sinAcosB=sinC,∴3sinBcosA-3sinAcosB=sin(A+B),
∴3sinBcosA-3sinAcosB=sinBcosA+sinAcosB,即2sinBcosA=4sinAcosB,
两边同除以cosAcosB可得2tanB=4tanA,即tanB=2tanA,
故选:A.

点评 本题考查正弦定理,涉及三角函数公式和弦化切的思想,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知{an}为等比数列,其中a1=1,且a2,a3+a5,a4成等差数列.
(1)求数列{an}的通项公式;
(2)设bn=2n-1+an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦点在圆x2+y2=4上,过椭圆的左顶点倾斜角为$\frac{π}{3}$的直线与圆x2+y2=4相切,则椭圆的离心率(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}+2x,x≥0}\\{{x}^{2}-2x,x<0}\end{array}\right.$,若关于x的不等式[f(x)]2+af(x)<0恰有1个整数解,则实数a的最大值为(  )
A.2B.3C.5D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知A(1,0,0),B(0,1,0),C(0,0,2)
(1)若$\overrightarrow{DB}$∥$\overrightarrow{AC}$,$\overrightarrow{DC}$∥$\overrightarrow{AB}$,求点D的坐标;
(2)求到A,B两点距离相等的点P(x,y,z)的坐标应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知A(5,1),B(1,3),O为坐标原点且$\overrightarrow{O{A}_{1}}$=$\frac{1}{3}$$\overrightarrow{OA}$,$\overrightarrow{OB}$1=$\frac{1}{3}$$\overrightarrow{OB}$,求$\overrightarrow{{A}_{1}{B}_{1}}$的坐标和长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设P是双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1上一点,F1、F2是双曲线的两焦点,若|PF1|=3,则|PF2|=9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足2acosC-(2b-c)=0.
(1)求角A;
(2)若sinC=2sinB,且a=$\sqrt{3}$,求边b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=$\left\{\begin{array}{l}{2x+cosx,x≥0}\\{x(a-x),x<0}\end{array}\right.$若关于x的不等式f(x)<π的解集为(-∞,$\frac{π}{2}$),则实数a的取值范围是a>-2$\sqrt{π}$.

查看答案和解析>>

同步练习册答案