| A. | tanB=2tanA | B. | tanA=2tanB | C. | tanB•tanA=2 | D. | tanA+tanB=2 |
分析 由题意和正弦定理可得3sinBcosA-3sinAcosB=sinC=sin(A+B),由三角函数的和差角公式及弦化切的思想可得.
解答 解:∵△ABC的三个角A,B,C所对的边分别是a,b,c,且3bcosA-3acosB=c,
∴由正弦定理可得3sinBcosA-3sinAcosB=sinC,∴3sinBcosA-3sinAcosB=sin(A+B),
∴3sinBcosA-3sinAcosB=sinBcosA+sinAcosB,即2sinBcosA=4sinAcosB,
两边同除以cosAcosB可得2tanB=4tanA,即tanB=2tanA,
故选:A.
点评 本题考查正弦定理,涉及三角函数公式和弦化切的思想,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 5 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com