精英家教网 > 高中数学 > 题目详情
5.对于非空集合A,B,设k(A,B)表示集合A,B中元素个数差的绝对值,若A={1,2},B={x||x2+ax+1|=1},且k(A,B)=1,由a的所有可能值构成的集合是S,则S中所有元素之和为(  )
A.0B.1C.3D.4

分析 化简集合B={x|x2+ax+1=1或x2+ax+1=-1},可知集合B中的元素个数.对B个数进行讨论.确定a的值,从而确定构成的集合是S,可得S中所有元素之和.

解答 解:由题意,集合B={x|x2+ax+1=1或x2+ax+1=-1},
可知集合B的元素个数有1个或者3个.
若集合B的元素个数有1个,则方程x2+ax=0有两个相同的解.
∴△=0,得a=0.
当a=0时,x2+ax+2=0可得x2+2=0,该方程无解.
符合题意.
若集合B的元素个数有3个,则a≠0,方程x2+ax=0有两个不相同的解.
∴x2+ax+2=0有两个相同的解.
∴△=0,得a=$-2\sqrt{2}$或2$\sqrt{2}$..
那么由a的所有可能值构成的集合是S={0,$-2\sqrt{2}$,2$\sqrt{2}$}.
则S中所有元素之和等于0.
故选A.

点评 本题考查了集合的元素的个数存在性讨论和基本运算,一元二次方程解的问题以及对新定义的理解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.有5人排成一排照相,其中有男、女医生各1人,男、女教师各1人,男运动员1人,若同职业的人互不相邻,且女士相邻,则不同的站排方式共有(  )
A.28B.30C.48D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知△ABC中,顶点A(2,1),B(-2,0),∠C的平分线所在直线的方程为x+y=0.
(1)求顶点C的坐标;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知sin(π-α)=log27$\frac{1}{9},且α∈(-\frac{π}{2},0)$,则tanα=$-\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知抛物线C1:x2=4y的焦点F也是椭圆C2:$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}$+=1(a>b>0)的一个焦点.C1与C2的公共弦长为2$\sqrt{6}$.
(Ⅰ)求C2的方程;
(Ⅱ)过点F的直线l与C1相交于A,B两点,与C2相交于C、D两点,且$\overrightarrow{AC}$,$\overrightarrow{BD}$同向.若|AC|=|BD|,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=sinx-$\frac{2}{5π}$x零点的个数是(  )
A.4B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个封闭立方体的六个面积各标出A,B,C,D,E,F这六个字母,现放成如图所示三种不同的位置,所看见的表面上的字母已标明,则字母A,B,C对面的字母分别是(  )
A.D,E,FB.F,D,EC.E,F,DD.E,D,F

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”.某中学为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识的竞赛.现有甲、乙、丙三位选手进入了前三名的最后角逐.规定:每场知识竞赛前三名的得分都分别为a,b,c(a>b>c,且a,b,c∈N*);选手最后得分为各场得分之和.在六场比赛后,已知甲最后得分为26分,乙和丙最后得分都为11分,且乙在其中一场比赛中获得第一名,则下列说法正确的是(  )
A.每场比赛第一名得分a为4B.甲可能有一场比赛获得第二名
C.乙有四场比赛获得第三名D.丙可能有一场比赛获得第一名

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若f(x)在x0处可导,则$lim\frac{{f({x_0}-△x)-f({x_0})}}{△x}$=(  )
A.f(x0B.-f′(x0C.f′(-x0D.不一定存在

查看答案和解析>>

同步练习册答案