精英家教网 > 高中数学 > 题目详情
15.若f(x)在x0处可导,则$lim\frac{{f({x_0}-△x)-f({x_0})}}{△x}$=(  )
A.f(x0B.-f′(x0C.f′(-x0D.不一定存在

分析 利用导数的定义即可得出.

解答 解:f(x)在x0处可导,则$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{△x}$=-$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{-△x}$=-f′(x0
故选:B.

点评 本题考查了导数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.对于非空集合A,B,设k(A,B)表示集合A,B中元素个数差的绝对值,若A={1,2},B={x||x2+ax+1|=1},且k(A,B)=1,由a的所有可能值构成的集合是S,则S中所有元素之和为(  )
A.0B.1C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在2L高产优质小麦种子中混入了一粒带白粉病的种子,从中随机取出10mL,则含有白粉病种子的概率是(  )
A.$\frac{1}{20}$B.$\frac{1}{50}$C.$\frac{1}{100}$D.$\frac{1}{200}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线y=x+m与抛物线x2=4y相切,且与x轴的交点为M,点N(-1,0).若动点P与两定点M,N所构成三角形的周长为6.  
(Ⅰ) 求动点P的轨迹C的方程;
 (Ⅱ) 设斜率为$\frac{1}{2}$的直线l交曲线C于A,B两点,当PN⊥MN时,证明:∠APN=∠BPN.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设△ABC的内角A,B,C,所对的边分别是a,b,c.若a2+b2-c2+ab=0,则角C=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求下列函数的导数:
(1)f(x)=(2x2+3)(3x-1)
(2)f(x)=3x•(lnx-x)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图所示,已知A、B、C是一条直路上的三点,AB与BC各等于2km,从三点分别遥望塔M,在A处看见塔在北偏东45°方向,在B处看塔在正东方向,在点C处看见塔在南偏东60°方向,则塔M到直路ABC的最短距离为$\frac{14+10\sqrt{3}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列说法中,所有正确说法的序号是②④.
①终边落在y轴上的角的集合是{α|α=$\frac{kπ}{2}$,k∈Z};
②函数y=2cos(x-$\frac{π}{4}$)图象的一个对称中心是($\frac{3π}{4}$,0);
③函数y=tanx在第一象限是增函数;
④已知$f(x)=2asin(2x+\frac{π}{6})-2a+b,(a>0)$,$x∈[\frac{π}{4},\frac{3π}{4}]$,f(x)的值域为$\{y|-3≤y≤\sqrt{3}-1\}$,则a=b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.对任意两实数a、b,定义运算“max{a,b}”如下:max{a,b}=$\left\{\begin{array}{l}{a(a≥b)}\\{b(a<b)}\end{array}\right.$,则关于函数f(x)=max{sinx,cosx},下列命题中:
①函数f(x)的值域为[-$\frac{\sqrt{2}}{2}$,1];         
②函数f(x)是周期函数;
③函数f(x)的对称轴为x=kπ+$\frac{π}{4}(k∈{Z})$;
④当且仅当x=2kπ(k∈Z)时,函数f(x)取得最大值1;
⑤当且仅当2kπ<x<2kπ+$\frac{3}{2}π(k∈{Z})$时,f(x)<0;
正确的是①②③(填上你认为正确的所有答案)

查看答案和解析>>

同步练习册答案