精英家教网 > 高中数学 > 题目详情
7.如图所示,已知A、B、C是一条直路上的三点,AB与BC各等于2km,从三点分别遥望塔M,在A处看见塔在北偏东45°方向,在B处看塔在正东方向,在点C处看见塔在南偏东60°方向,则塔M到直路ABC的最短距离为$\frac{14+10\sqrt{3}}{13}$.

分析 根据已知条件求得∠CMA,进而可推断出△MBC与△MBA面积相等,利用三角形面积公式可求得CM和AM的关系,进而在△MAC中利用余弦定理求得a,最后根据三角形面积公式求得答案.

解答 解:已知AB=BC=2,∠AMB=45°,∠CMB=30°,∴∠CMA=75°
易见△MBC与△MBA面积相等,
∴AMsin45°=CMsin30°
即CM=$\sqrt{2}$AM,记AM=a,则CM=$\sqrt{2}$a,
在△MAC中,AC=4,由余弦定理得:16=3a2-2$\sqrt{2}$a2cos75°,
∴a2=$\frac{16}{4-\sqrt{3}}$,记M到AC的距离为h,则$\frac{1}{2}$×$\sqrt{2}$a2sin75°=2h
得h=$\frac{14+10\sqrt{3}}{13}$,
∴塔到直路ABC的最短距离为:$\frac{{14+10\sqrt{3}}}{13}$.
故答案为:$\frac{{14+10\sqrt{3}}}{13}$.

点评 本题主要考查了解三角形的实际应用.考查了学生对基础知识的综合运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.一个封闭立方体的六个面积各标出A,B,C,D,E,F这六个字母,现放成如图所示三种不同的位置,所看见的表面上的字母已标明,则字母A,B,C对面的字母分别是(  )
A.D,E,FB.F,D,EC.E,F,DD.E,D,F

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知sinθ=-$\frac{5}{13}$,且θ是第三象限角,则sin(θ+$\frac{π}{6}$)=$-\frac{{5\sqrt{3}+12}}{26}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若f(x)在x0处可导,则$lim\frac{{f({x_0}-△x)-f({x_0})}}{△x}$=(  )
A.f(x0B.-f′(x0C.f′(-x0D.不一定存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}是等差数列,a2=3,a6=7,则a11的值为(  )
A.11B.12C.13D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,且${S_n}=\frac{1}{2}{n^2}+\frac{9}{2}n,(n∈{N^*})$
(1)求数列{an}的通项公式;
(2)设${c_n}=\frac{1}{{(2{a_n}-9)(2{a_n}-7)}}$,数列{cn}的前n项和为Tn,求使不等式${T_n}>\frac{k}{2017}$对一切n∈N*都成立的正整数k的最大值;
(3)设$f(n)=\left\{\begin{array}{l}{a_n},(n=2k-1,k∈{N^*})\\ 3{a_n}-13,(n=2k,k∈{N^*})\end{array}\right.$,是否存在m∈N*,使得f(m+15)=5f(m)成立?若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知三次函数$f(x)=\frac{1}{3}{x^3}-({4m-1}){x^2}+({15{m^2}-2m-7})x+2$在x∈(-∞,+∞)是增函数,则m的取值范围是(  )
A.m<2或m>4B.-4<m<-2C.2<m<4D.以上皆不正确

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知向量$\overrightarrow{a}$=(sin θ,-2),$\overrightarrow{b}$=(cos θ,1),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则tan 2θ=$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.从编号为1~16的16个球中选出编号都不相邻的5个球,不同的选法有792种(用数字作答)

查看答案和解析>>

同步练习册答案