精英家教网 > 高中数学 > 题目详情
18.已知sinθ=-$\frac{5}{13}$,且θ是第三象限角,则sin(θ+$\frac{π}{6}$)=$-\frac{{5\sqrt{3}+12}}{26}$.

分析 由已知利用同角三角函数基本关系式可求cosθ,进而利用特殊角的三角函数值及两角和的正弦函数公式即可计算得解.

解答 解:∵sinθ=-$\frac{5}{13}$,且θ是第三象限角,
∴cosθ=-$\sqrt{1-si{n}^{2}θ}$=-$\frac{12}{13}$,
∴sin(θ+$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$sin$θ+\frac{1}{2}cosθ$=$\frac{\sqrt{3}}{2}×(-\frac{5}{13})$+$\frac{1}{2}×(-\frac{12}{13})$=$-\frac{{5\sqrt{3}+12}}{26}$.
故答案为:$-\frac{{5\sqrt{3}+12}}{26}$.

点评 本题主要考查了同角三角函数基本关系式,特殊角的三角函数值及两角和的正弦函数公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.参数方程$\left\{\begin{array}{l}{x=\frac{1}{t}}\\{y=\frac{1}{t}\sqrt{{t}^{2}-1}}\end{array}\right.$(t为参数)所表示的曲线是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{{\sqrt{2}}}{2}$,圆C的参数方程为:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=-2+2sinθ}\end{array}}\right.$(其中θ为参数).
(1)判断直线l与圆C的位置关系;
(2)若椭圆的参数方程为$\left\{{\begin{array}{l}{x=2cosφ}\\{y=\sqrt{3}sinφ}\end{array}}\right.$(φ为参数),过圆C的圆心且与直线l垂直的直线l′与椭圆相交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在2L高产优质小麦种子中混入了一粒带白粉病的种子,从中随机取出10mL,则含有白粉病种子的概率是(  )
A.$\frac{1}{20}$B.$\frac{1}{50}$C.$\frac{1}{100}$D.$\frac{1}{200}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列命题中,假命题的个数是(  )
(1)若直线a在平面α上,直线b不在平面α上,则a、b是异面直线
(2)若a、b是异面直线,则与a、b都垂直的直线有且只有一条
(3)若a、b是异面直线,则与c、d与直线a、b都相交,则c、d也是异面直线
(4)设a、b是两条直线,若a∥平面α,a∥b,则b∥平面α
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线y=x+m与抛物线x2=4y相切,且与x轴的交点为M,点N(-1,0).若动点P与两定点M,N所构成三角形的周长为6.  
(Ⅰ) 求动点P的轨迹C的方程;
 (Ⅱ) 设斜率为$\frac{1}{2}$的直线l交曲线C于A,B两点,当PN⊥MN时,证明:∠APN=∠BPN.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设△ABC的内角A,B,C,所对的边分别是a,b,c.若a2+b2-c2+ab=0,则角C=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图所示,已知A、B、C是一条直路上的三点,AB与BC各等于2km,从三点分别遥望塔M,在A处看见塔在北偏东45°方向,在B处看塔在正东方向,在点C处看见塔在南偏东60°方向,则塔M到直路ABC的最短距离为$\frac{14+10\sqrt{3}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l:x-$\sqrt{3}$y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则|CD|=(  )
A.$2\sqrt{3}$B.4C.$4\sqrt{3}$D.6

查看答案和解析>>

同步练习册答案