精英家教网 > 高中数学 > 题目详情
19.已知三次函数$f(x)=\frac{1}{3}{x^3}-({4m-1}){x^2}+({15{m^2}-2m-7})x+2$在x∈(-∞,+∞)是增函数,则m的取值范围是(  )
A.m<2或m>4B.-4<m<-2C.2<m<4D.以上皆不正确

分析 求出函数的导数,通过△=4(4m-1)2-4(15m2-2m-7)≤0,解出即可.

解答 解:∵f(x)=$\frac{1}{3}$x3-(4m-1)x2+(15m2-2m-7)x+2,
∴f′(x)=x2-2(4m-1)x+(15m2-2m-7)>0,
∴△=4(4m-1)2-4(15m2-2m-7)<0,
解得:2<m<4,
故选:C.

点评 本题考察了函数的单调性,导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\frac{{\sqrt{2}}}{2}$,圆C的参数方程为:$\left\{{\begin{array}{l}{x=2cosθ}\\{y=-2+2sinθ}\end{array}}\right.$(其中θ为参数).
(1)判断直线l与圆C的位置关系;
(2)若椭圆的参数方程为$\left\{{\begin{array}{l}{x=2cosφ}\\{y=\sqrt{3}sinφ}\end{array}}\right.$(φ为参数),过圆C的圆心且与直线l垂直的直线l′与椭圆相交于A,B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设△ABC的内角A,B,C,所对的边分别是a,b,c.若a2+b2-c2+ab=0,则角C=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图所示,已知A、B、C是一条直路上的三点,AB与BC各等于2km,从三点分别遥望塔M,在A处看见塔在北偏东45°方向,在B处看塔在正东方向,在点C处看见塔在南偏东60°方向,则塔M到直路ABC的最短距离为$\frac{14+10\sqrt{3}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设甲、乙两楼相距10m,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则甲、乙两楼的高分别是(  )
A.$\frac{10\sqrt{3}}{3}$m,$\frac{40}{3}$$\sqrt{3}$ mB.10$\sqrt{3}$ m,20$\sqrt{3}$ mC.10($\sqrt{3}$-$\sqrt{2}$) m,20$\sqrt{3}$ mD.10$\sqrt{3}$ m,$\frac{40}{3}$$\sqrt{3}$ m

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.下列说法中,所有正确说法的序号是②④.
①终边落在y轴上的角的集合是{α|α=$\frac{kπ}{2}$,k∈Z};
②函数y=2cos(x-$\frac{π}{4}$)图象的一个对称中心是($\frac{3π}{4}$,0);
③函数y=tanx在第一象限是增函数;
④已知$f(x)=2asin(2x+\frac{π}{6})-2a+b,(a>0)$,$x∈[\frac{π}{4},\frac{3π}{4}]$,f(x)的值域为$\{y|-3≤y≤\sqrt{3}-1\}$,则a=b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若双曲线$\frac{{x}^{2}}{m+9}$+$\frac{{y}^{2}}{9}$=1的离心率为2,则m的值是-36.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线l:x-$\sqrt{3}$y+6=0与圆x2+y2=12交于A,B两点,过A,B分别作l的垂线与x轴交于C,D两点,则|CD|=(  )
A.$2\sqrt{3}$B.4C.$4\sqrt{3}$D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,若2cosAcosB=1-cosC,则△ABC是等腰三角形.

查看答案和解析>>

同步练习册答案