精英家教网 > 高中数学 > 题目详情
9.在△ABC中,若2cosAcosB=1-cosC,则△ABC是等腰三角形.

分析 由三角函数公式化简可得cos(A-B)=1,结合三角形角的范围可得.

解答 解:∵2cosAcosB=1-cosC=1+cos(A+B),
∴2cosAcosB=cosAcosB-sinAsinB+1,
∴cosAcosB+sinAsinB=1,
∴cos(A-B)=1,
∴A-B=0,即A=B,
∴△ABC一定是等腰三角形
故答案是:等腰.

点评 本题考查两角和与差的三角函数,涉及三角形形状的判定,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知三次函数$f(x)=\frac{1}{3}{x^3}-({4m-1}){x^2}+({15{m^2}-2m-7})x+2$在x∈(-∞,+∞)是增函数,则m的取值范围是(  )
A.m<2或m>4B.-4<m<-2C.2<m<4D.以上皆不正确

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数$f(x)=\left\{\begin{array}{l}{{x}^{2}+1,0≤x<5}\\{f(x-5),x>5}\end{array}\right.$,则f(2014)=17.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.从编号为1~16的16个球中选出编号都不相邻的5个球,不同的选法有792种(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某棱柱的三视图如图示,则该棱柱的体积为(  )
A.3B.4C.6D.12

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.将5名教师分到3所学校支教,每所学校至少1名教师,则有150 种不同分派方法.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)的导函数为f'(x)=a(x+1)(x-a),(a<0)且f(x)在x=a处取到极大值,那么a的取值范围是(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球将自由下落.小球在下落过程中它将3次遇到黑色障碍物,最后落入A袋或B袋中.已知小球每次遇到黑色障碍物时,向左、右两边下落的概率都是$\frac{1}{2}$.
(Ⅰ)求小球落入B袋中的概率P(B);
(Ⅱ)在容器入口处依次放入4个小球,求恰好有3个球落入A袋中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在空间直角坐标系O-xyz中,点(1,2,-2)关于点(-1,0,1)的对称点是(  )
A.(-3,-2,4)B.(3,-2,-4)C.(-3,2,-4)D.(-3,2,4)

查看答案和解析>>

同步练习册答案