分析 作出不等式组对应的平面区域,利用目标函数的几何意义,通过平移从而求出z的最大值和最小值.
解答
解:作出不等式组对应的平面区域如图:(阴影部分).
由z=x+y得y=-x+z,即直线的截距最大,z也最大.
平移直线y=-x+z,即直线y=-x+z经过点B时,截距最大,此时z最大,
由$\left\{\begin{array}{l}{3x-y-6=0}\\{x-y+2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=4}\\{y=6}\end{array}\right.$,即B(4,6),
此时z=4+6=10.
经过点(0,O)时,截距最小,此时z最小,为z=0,
则z=x+y最大值与最小值的和为10,
故答案为:10.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2\sqrt{34}}{17}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{4\sqrt{7}}{7}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{π}{3}$ | B. | $\frac{2}{3}$ | C. | ($\frac{2}{3}$,0) | D. | (0,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com