精英家教网 > 高中数学 > 题目详情
2.已知a>b>0,c>d>0,则(  )
A.$\sqrt{\frac{a}{d}}$<$\sqrt{\frac{b}{c}}$B.$\sqrt{\frac{a}{d}}$≤$\sqrt{\frac{b}{c}}$C.$\sqrt{\frac{a}{d}}$>$\sqrt{\frac{b}{c}}$D.$\sqrt{\frac{a}{d}}$≥$\sqrt{\frac{b}{c}}$

分析 利用不等式的基本性质即可判断出结论.

解答 解:∵c>d>0,
∴$0<\frac{1}{c}<\frac{1}{d}$,又a>b>0,
∴$\frac{a}{d}>\frac{b}{c}$,
因此$\sqrt{\frac{a}{d}}$>$\sqrt{\frac{b}{c}}$.
故选:C.

点评 本题考查了不等式的基本性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.二项式(ax+$\frac{{\sqrt{3}}}{6}$)6的展开式中x5的系数为$\sqrt{3}$,则$\int_0^a$x2dx=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过A(-1,5),B(2,-1)两点的直线方程为(  )
A.2x-y+3=0B.x-2y+3=0C.2x+y-3=0D.x+2y-3=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合M={x|x2-x-2<0},N={x||x|≤2},则(  )
A.M∩N=∅B.M∩N=MC.M∪N=MD.M∪N=R

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x) 是定义在R上且以2为周期的偶函数,当0≤x≤1时,f(x)=x2,如果直线y=x+a与曲线y=f(x) 恰有三个不同的交点,则实数a的取值范围是(  )
A.[2k,2k+$\frac{1}{4}$](k∈Z)B.(2k-$\frac{1}{4}$,2k)(k∈Z)C.(2k-$\frac{1}{2}$,2k)(k∈Z)D.(2k,2k+$\frac{1}{4}$)(k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,已知AB=2,BC=1,AC=$\sqrt{3}$,则$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{BC}$•$\overrightarrow{CA}$+$\overrightarrow{CA}$•$\overrightarrow{AB}$=(  )
A.-4B.-2C.0D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.解一元二次不等式
(1)-x2-2x+3>0
(2)x2-3x+5>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知f(x)=-$\frac{1}{8}$x2-lnx,设曲线y=f(x)在x=t(0<t<2)处的切线为l.
(1)判断函数f(x)的单调性;
(2)求切线l的倾斜角θ的取值范围;
(3)证明:当x∈(0,2)时,曲线y=f(x)与l有且仅有一个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,焦距为2$\sqrt{3}$.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 过椭圆C的左顶点B且互相垂直的两直线l1,l2分别交椭圆C于点M,N(点M,N均异于点B),试问直线MN是否过定点,若过定点?求出定点的坐标;若不过定点,说明理由.

查看答案和解析>>

同步练习册答案