精英家教网 > 高中数学 > 题目详情
9.已知数列{an}中,点(an,an+1)在直线y=x+2上,且首项a1是方程3x2-4x+1=0的整数解.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)数列{an}的前n项和为Sn,等比数列{bn}中,b1=a1,b2=a2,数列{bn}的前n项和为Tn,当Tn≤Sn时,请直接写出n的值.

分析 (Ⅰ)直接利用已知条件求出首项,得到关系式,判断数列是等差数列,即可求数列{an}的通项公式;
(Ⅱ)求出Sn,等比数列{bn}中,b1=a1,b2=a2,求出公比,然后求解Tn,通过当Tn≤Sn时,写出n的值.

解答 (本小题共13分)
解:( I)根据a1是方程3x2-4x+1=0的整数解,解得a1=1,
点(an,an+1)在直线y=x+2上,可得an+1=an+2,
即an+1-an=2=d,…(2分)
所以数列{an}是一个等差数列,an=a1+(n-1)d=2n-1…(4分)
( II)数列{an}的前n项和${S_n}={n^2}$…(6分)
等比数列{bn}中,b1=a1=1,b2=a2=3,
所以q=3,${b_n}={3^{n-1}}$…(9分)
数列{bn}的前n项和${T_n}=\frac{{1-{3^n}}}{1-3}=\frac{{{3^n}-1}}{2}$…(11分)
Tn≤Sn即$\frac{{{3^n}-1}}{2}≤{n^2}$,又n∈N*
所以n=1或2.…(13分)

点评 本题考查数列与函数的综合应用,数列求和,以及数列与不等式的应用,考查分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知一个等比数列的前三项依次是a,2a+2,3a+3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.规定:坐标轴绕着原点逆时针旋转的角度为正角,顺时针旋转的角度为负角,不改变坐标轴的原点和长度单位,只将两坐标轴旋转同一个角度θ,这种坐标轴的变换叫做坐标轴的θ角旋转,简称转轴θ,将平面直角坐标系O-xy转轴θ得到新坐标系O-x′y′,设点P在两个坐标系中的坐标分别为(x,y)和(x′,y′),则下列结论中错误的是①②③(把你认为错误的所有结论的序号都填上)
①与x轴垂直的直线转轴后一定与x'轴垂直;②当θ=$\frac{π}{4}$时,点P(1,1)在新坐标系中的坐标为P(1,0);③当θ=-$\frac{π}{4}$时,反比例函数y=$\frac{1}{x}$的图象经过转轴后的标准方程是x′2-y′2=2
④当θ=$\frac{π}{6}$时,直线x=2的图象经过转轴后的直线方程是$\sqrt{3}$x′-y′-4=0
⑤点P在两个坐标系中坐标之间的关系是$\left\{\begin{array}{l}x=x'cosθ-y'sinθ\\ y=x'sinθ+y'cosθ\end{array}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,当输出值为4时,输入x的值为(  )
A.-2或-3B.2或-3C.±2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A,B,C所对的边分别为a,b,c,且a=1,B=45°,S△ABC=2,则 b等于(  )
A.$4\sqrt{2}$B.5C.41D.$5\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在复平面内,复数$\frac{7+i}{3+4i}$对应的点的坐标为(  )
A.(1,-1)B.(-1,1)C.$(\frac{17}{25},-1)$D.$(\frac{17}{5},-1)$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若变量x,y满足约束条件$\left\{\begin{array}{l}y-4≤0\\ x+y-4≤0\\ x-y≤0\end{array}\right.$则z=2x+y的最大值是6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z满足(1-i)z=i(i是虚数单位),则z在复平面内对应的点所在象限为(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C的两个焦点分别为F1(-1,0)、F2(1,0),短轴的两个端点分别为B1、B2
(1)若△F1B1B2为等边三角形,求椭圆C的方程;
(2)若椭圆C的离心率为$\frac{1}{2}$,直线l与椭圆相交于A、B两点,弦AB的中点为(${\frac{1}{2}$,1),求直线l的方程;
(3)若椭圆C的短轴长为2,过点F2的直线l与椭圆C相交于P、Q两点,且$\overrightarrow{{F_1}P}$⊥$\overrightarrow{{F_1}Q}$,求直线l的方程.

查看答案和解析>>

同步练习册答案