精英家教网 > 高中数学 > 题目详情
2.已知定义在R上的偶函数f(x),满足f(x)=-f(4-x),且当x∈[2,4)时,f(x)=log2(x-1),则f(2013)+f(2014)的值为(  )
A.-2B.-1C.1D.2

分析 由题设条件知本题中所给的函数是一个周期性函数,故可以利用周期性与函数是偶函数这一性质将要求的函数值转化到区间[2,4)上求解.

解答 解:定义在R上的偶函数f(x),满足f(x)=-f(4-x)恒成立,
故可得f(x)=f(x-8),可得此函数的周期是8.
又当x∈[2,4)时,f(x)=log2(x-1),
由此f(2010)+f(2011)=f(2)+f(3)=log2(2-1)+log2(3-1)=1,
故选:C.

点评 本题考点是函数的值,本题考查利用函数的性质通过转化来求函数的值,是函数性质综合运用的一道好题.对于本题中恒等式的意义要好好挖掘,做题时要尽可能的从这样的等式中挖掘出信息,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.我们把满足an+an-1=k(n≥2,k是常数)的数列叫做等和数列,常数k叫做数列的公和.若等和数列{an}的首项为1,公和为3,则该数列的前2014项的和为S2014=3021..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=xlnx.
(Ⅰ)若曲线y=f(x)在点P(x0,f(x0))处与直线y=b相切,求b的值;
(Ⅱ)若任意x∈[$\frac{1}{e}$,e]均使不等式2f(x)≥-x2+ax-3成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在区间[-1,5]上随机地取一个数x,则|x|≤1的概率为$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知双曲线$\frac{x^2}{m}$-$\frac{y^2}{n}$=1的一条渐近线方程为y=$\frac{4}{3}$x,则该双曲线的离心率e为$\frac{5}{3}$或$\frac{5}{4}$..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.(x2+x+1)5展开式中,x5的系数为(  )
A.51B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知α,β是两个不同的平面,m,n是两条不同的直线,则下列命题中正确的是(  )
A.若m∥n,m?β,则n∥βB.若m∥α,α∩β=n,则m∥n
C.若m⊥α,m⊥β,则α∥βD.若m⊥β,α⊥β,则m∥α

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知抛物线C:y2=8x的焦点为F,直线y=2x-8与抛物线C相交于A,B两点,则tan∠AFB=(  )
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.函数f(x)的定义域为D={x|x≠0},且对于任意x1,x2∈D,有f(x1•x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)判断函数f(x)的奇偶性并证明;
(3)如果f(4)=3,f(x-2)+f(x+1)≤3,且f(x)在(0,+∞)上是增函数,求实数x的取值范围.

查看答案和解析>>

同步练习册答案