精英家教网 > 高中数学 > 题目详情
如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)设二面角D-AE-C为60°,AP=1,AD=
3
,求三棱锥E-ACD的体积.
考点:二面角的平面角及求法,棱柱、棱锥、棱台的体积,直线与平面平行的判定
专题:空间位置关系与距离
分析:(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;
(Ⅱ)延长AE至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E-ACD的体积.
解答: (Ⅰ)证明:连接BD交AC于O点,连接EO,
∵O为BD中点,E为PD中点,
∴EO∥PB,(2分)
EO?平面AEC,PB?平面AEC,所以PB∥平面AEC;(6分)
(Ⅱ)解:延长AE至M连结DM,使得AM⊥DM,
∵四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,
∴CD⊥平面AMD,二面角D-AE-C为60°,
∴∠CMD=60°,
∵AP=1,AD=
3
,∠ADP=30°,
∴PD=2,
E为PD的中点.AE=1,
∴DM=
3
2

CD=
3
2
×tan60°
=
3
2

三棱锥E-ACD的体积为:
1
3
×
1
2
AD•CD•
1
2
PA
=
1
3
×
1
2
×
3
×
3
2
×
1
2
×1
=
3
8
点评:本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件是(  )
A、s>
1
2
B、s>
3
5
C、s>
7
10
D、s>
4
5

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,△ABC是圆的内接三角形,∠BAC的平分线交圆于点D,交BC于E,过点B的圆的切线与AD的延长线交于点F,在上述条件下,给出下列四个结论:
①BD平分∠CBF;
②FB2=FD•FA;
③AE•CE=BE•DE;
④AF•BD=AB•BF.
所有正确结论的序号是(  )
A、①②B、③④
C、①②③D、①②④

查看答案和解析>>

科目:高中数学 来源: 题型:

△ABC中,角A,B,C所对的边分别为a,b,c.已知a=3,cosA=
6
3
,B=A+
π
2

(Ⅰ)求b的值;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2,g(x)=2elnx(x>0)(e为自然对数的底数).
(1)求F(x)=f(x)-g(x)(x>0)的单调区间及最小值;
(2)是否存在一次函数y=kx+b(k,b∈R),使得f(x)≥kx+b且g(x)≤kx+b对一切x>0恒成立?若存在,求出该一次函数的表达式;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且满足Sn=
1
2
n2+
1
2
n.数列{bn}满足b1=1,2bn-bn-1=0(n≥2,n∈N*).
(1)求数列{an}和{bn}的通项公式;
(2)设cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是边长为8的正方形,四条侧棱长均为2
17
,点G,E,F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH.
(Ⅰ)证明:GH∥EF;
(Ⅱ)若EB=2,求四边形GEFH的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=e-5x+2在点(0,3)处的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x2+5x+4|,x≤0
2|x-2|,x>0
,若函数y=f(x)-a|x|恰有4个零点,则实数a的取值范围为
 

查看答案和解析>>

同步练习册答案