精英家教网 > 高中数学 > 题目详情
如图,正△ABC的中线AF与中位线DE相交于G,已知△A′ED是△AED绕DE旋转过程中的一个图形.其中正确的说法是(  )
(1)动点A′在平面ABC上的射影在线段AF上
(2)恒有平面A′GF⊥平面BCED
(3)三棱锥A′-FED的体积有最大值
(4)异面直线A′E与BD不可能垂直.
A、(1)(2)(3)
B、(1)(2)(4)
C、(2)(3)(4)
D、(1)(3)(4)
考点:命题的真假判断与应用,棱柱、棱锥、棱台的体积,异面直线的判定,平面与平面垂直的判定
专题:空间位置关系与距离
分析:由正△ABC的中线AF与中位线DE相交于G,可得AF⊥DE.当△A′ED是△AED绕DE旋转过程中,ED⊥平面A′FG,平面A′FG⊥平面BCED.再利用面面垂直的性质定理即可得出.
解答: 解:由正△ABC的中线AF与中位线DE相交于G,∴AF⊥DE.
当△A′ED是△AED绕DE旋转过程中,ED⊥平面A′FG,因此平面A′FG⊥平面BCED.
由面面垂直的性质定理可得:动点A′在平面ABC上的射影在线段AF上,且当平面A′ED⊥平面ABC时,三棱锥A′-FED的体积=
1
3
S△EFDAG
有最大值;
不妨取AC=4,可知:当cos∠A′GF=-
1
3
时,可得A′E⊥FE.
综上可知:(1)(2)(3)正确,(4)错误.
故选:A.
点评:本题综合考查了线线、线面、面面垂直的判定与性质定理、三棱锥的体积等基础知识与基本技能方法,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个袋子装有大小完全相同的9个球,其中5个红球,编号分别为1,2,3,4,5;4个白球,编号分别为1,2,3,4.
(1)从袋中任意取出3个球,求取出的3个球的编号为连续的自然数的概率;
(2)从袋中任意取出4个球,记ξ为取出的4个球中编号的最大值,求ξ的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x丨f(x)=x},B={x丨f[f(x)]=x},其中函数f(x)=x2+ax+b(a、b为实数).若A是单元素集,则A、B之间的关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

道路安全交通法规定,驾驶员血液酒精含量在20~80mg/100ml,属酒后驾车,血液酒精含量在80mg/100ml以上时,属醉酒驾车,2011年6月1日7:00至22:30,某地查处酒后驾车和醉酒驾车共50起,如图是对这50人的血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数大约为(  )
A、9B、10C、11D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|2x2+7x-15<0},B={x|x2+ax+b≤0},若A∩B=∅,A∪B={x|-5<x≤2},则实数a,b的值分别是(  )
A、2,4
B、
1
2
,4
C、
11
2
,5
D、-
7
2
,3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+
1
2
ax2+bx+c
在x1处取得极大值,在x2处取得最小值,满足x1∈(-1,1),x2∈(2,4),则a+2b的取值范围是(  )
A、(-11,-3)
B、(-6,-4)
C、(-11,3)
D、(-16,-8)

查看答案和解析>>

科目:高中数学 来源: 题型:

p:若关于x的方程sinx+cosx=m有实数解;q:f(x)=logmx在(0,+∞)为单调递增.当p、q有且仅有一个为真命题时,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某渔场对鱼的重量抽样统计如表:
体重(斤) 尾数 频率
1.0-1.5 1
 
1.5-2.0 3
 
2.0-2.5 7
 
2.5-3.0 10
 
3.0-3.5 15
 
3.5-4.0 3
 
4.0-4.5 1
 
(1)填写表中的频率.
(2)画出频率分布直方图.
(3)若该渔场共打上来6000条鱼,试估计有多少条鱼重量在2.0~3.5斤之间?

查看答案和解析>>

科目:高中数学 来源: 题型:

以下列结论中:
(1)|
a
b
|≤|
a
||
b
|

(2)
a
(
a
b
)=
a
2
b

(3)如果
a
b
<0
,那么
a
b
的夹角为钝角;
(4)若
a
是直线l的方向向量,则λ
a
(λ∈R)
也是直线l的方向向量;
(5)
a
b
=
b
c
b
=
0
的必要不充分条件.
正确结论的序号是
 

查看答案和解析>>

同步练习册答案