精英家教网 > 高中数学 > 题目详情
16.已知Sn是公差不为0 的等差数列{an}的前n 项和,S1,S2,S4成等比数列,且${a_3}=-\frac{5}{2}$,
(I)求数列{an}的通项公式;
(Ⅱ)若bn=$\frac{1}{{(2n+1){a_n}}}$,求数列{bn}的前n 项和Tn

分析 (I)设等差数列{an}的公差为d(d≠0),运用等比数列的中项的性质和等差数列的通项公式和求和公式,解方程可得d=-1,a1=-$\frac{1}{2}$,可得an=-$\frac{2n-1}{2}$;
(Ⅱ)求得bn=$\frac{1}{(2n+1){a}_{n}}$=-$\frac{2}{(2n-1)(2n+1)}$=-($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),运用数列的求和方法:裂项相消求和,化简即可得到所求和.

解答 解:(I)设等差数列{an}的公差为d(d≠0),
S1,S2,S4成等比数列,且${a_3}=-\frac{5}{2}$,
可得S22=S1S4,a1+2d=-$\frac{5}{2}$,
即有(2a1+d)2=a1(4a1+6d),
化为d=2a1,解得d=-1,a1=-$\frac{1}{2}$,
可得an=a1+(n-1)d=-$\frac{1}{2}$-(n-1)=-$\frac{2n-1}{2}$;
(Ⅱ)bn=$\frac{1}{{(2n+1){a_n}}}$=-$\frac{2}{(2n-1)(2n+1)}$=-($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
则前n项和Tn=-(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=-(1-$\frac{1}{2n+1}$)=-$\frac{2n}{2n+1}$.

点评 本题考查等差数列的通项公式和求和公式的运用,以及数列的求和方法:裂项相消求和,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在△ABC中,三个内角A,B,C的对边分别为a,b,c,且4a2cosB-2accosB=a2+b2-c2
(1)求角B;
(2)若b=2$\sqrt{3}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=loga(ax2-x+1),其中a>0且a≠1.
(1)当a=$\frac{1}{2}$时,求函数f(x)的值域;
(2)当f(x)在区间$[{\frac{1}{4},\frac{3}{2}}]$上为增函数时,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设Sn等差数列{an}的前n项和.若a3+a5+a7=21,则S9=(  )
A.42B.45C.49D.63

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.定义在R上的函数f(x)满足f′(x)>1,且f(1)=2,在不等式f(x)>x+1的解集为(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设二次函数f(x)=ax2+2bx+c(c>b>a),其图象过点(1,0),且与直线y=-a有交点.
(1)求证:$0≤\frac{b}{a}<1$;
(2)若直线y=-a与函数y=|f(x)|的图象从左到右依次交于A,B,C,D四点,若线段AB,BC,CD能构成钝角三角形,求$\frac{b}{a}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=(2a-1)lnx-x在(0,1)上为增函数,则实数a的取值范围是(  )
A.a<1B.a≤1C.a≥1D.0<a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知y=f(x)的导函数f′(x)的图象如图所示,则下列结论正确的是(  )
A.f(x)在(-3,-1)上先增后减B.x=-2是函数f(x)极小值点
C.f(x)在(-1,1)上是增函数D.x=1是函数f(x)的极大值点

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.数列{an}中,a1=2,且an=$\frac{{2{a_{n-1}}}}{{2+{a_{n-1}}}}$(n≥2).
(1)求证:$\{\frac{1}{a_n}\}$为等差数列,并求an
(2)令bn=a2n-1•a2n+1,求数列{bn}的前n项的和为Sn

查看答案和解析>>

同步练习册答案