分析 (1)利用余弦定理,代入计算,即可求角B;
(2)由余弦定理可得12=a2+c2-ac≥2ac-ac=ac,即可求△ABC面积的最大值.
解答 解:(1)∵4a2cosB-2accosB=a2+b2-c2,
∴4a2cosB-2accosB=a2-c2+a2+c2-2accosB,
∴4a2cosB=2a2,
∴cosB=$\frac{1}{2}$,
∵0°<B<180°,
∴B=60°;
(2)由余弦定理可得12=a2+c2-ac≥2ac-ac=ac,
∴ac≤12,
∴S≤$\frac{1}{2}$acsinB=3$\sqrt{3}$,
∴△ABC面积的最大值为3$\sqrt{3}$.
点评 此题考查了余弦定理,三角形的面积公式,熟练掌握定理及公式是解本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {z|0≤z≤$\frac{1}{8}$} | B. | {z|0≤z≤2} | C. | {z|z≤0或z≥$\frac{1}{8}$} | D. | {z|0z≤0或z≥2} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com